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Motivation

Filtering in spatially-extended dynamical systems is a challenging task with im-
portant applications such as numerical weather prediction (NWP). The ensem-
ble Kalman filter (EnKF) is a popular inference method in geophysical models,
however in systems with non-linear dynamics or observation operators or non-
Gaussian noise inference quality can be poor. Particle filters (PFs) provide con-
sistent inferences in more general models, however the required ensemble size for
accurate inference scales exponentially with dimension. Localisation approaches
which exploit low dependence between state variables at spatially distant points
have been key to scaling EnKF methods to large spatially-extended models. Lo-
calising PF methods is however challenging as the resampling step can introduce
artificial discontinuities in the system state when applied locally.

Generative model:

Observation distribution ¢:(y|x:) n(dy)
Filtering distribution

Predictive distribution

Prediction update:

Assimilation update:

Model definition and notation

System state x;e X Vie 1:T,

x; = Fy(uy), up ~ [, observation ey Vtel:T,
X¢ = Fr(xe_1;ug), up~pp Vte2:T, state noise uw, el Vie1:T,
Y, = Gi(X¢;vy), v~ Viel:T. observation noise v, €V Vte 1:T.
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Filtering problem

Infer filtering distributions {m;;};—; given observations {y,}{_;.

Filtering distributions can be computed recursively by iterating two updates:

prediction assimilation
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Localisation kernel Partition of unity (PoU)

Prediction update: wi ; ~ pi11, @

Simulate observations: v, ~ Vit1, Y g,
Assimilation update:

K, is a Monte Carlo estimate of Kalman gain using {x}

Particle ensemble {x} f S approx1mates T+ at each time index ¢

Ensemble Kalman filter

Ensemble filters
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= Gt+1(w?+1|t;v?+1) Vnel:N.

Consistent as N — oo only when F}, G, linear and pu;, v; Gaussian Vt € 1:7T'.

Particle filter 34

Importance weights: w1 = gr1(Yyp1 [ 1)), Wi = ZNwHEm Vn € 1:N.
W1
N
Assimilation update: @y, = Z Riz1Zii1e Yn €L:N,

m=1

with matrix Ry € {0, 1}V %" satisfying R;;11 =1, E {Rt+1 } = Nw;.1.

Consistent as N — oo for arbitrary {Fy, Gy, us, vt }, however ensemble size N
required for fixed error scales exponentially with model dimension [5].

Assimilation update: @y, = Z

Ensemble transform particle filter [
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with matrix Ty the solution to the discrete optimal transport (OT) problem
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Consistent as N — oo. Still requires exponential scaling of N with dimension.

Proposed method

Spatially extended systems

Let (S,d) be a compact metric space representing the spatial domain and X
the field the state variables take values in for each s € S = X = X°.

Assume system is independently observed at a finite set of locations
{sq € S}, so that the log observation density decomposes as

thd yt Sd |33)

In practical implementations & will be dlscretlsed in to a mesh. The state
space X is then a vector space with a finite but typically high dimension — e.g.
operational NWP systems have meshes with order of 10® elements.
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Localised particle filters
D

= > la(y(sa) |2 ko ds,50).
d=1

For systems with large spatial domains, typically state
variables at distant points will have low dependence - de-
cay of correlations property. In EnKF methods this prop-
erty is exploited to perform localised assimilation updates.
A localisation kernel k : Ry — [0, 1] weights the effect of
the observations at each s; on the state variables at a

The kernel is chosen such that
k(0) =1 and k(r) =0 Vr > R for a localisation radius R.

[9,10]

How to implement assimilation update with localised weights?

Loc-PF: Generate resampling matrices R;(s) independently for each s € S
leads to noise in state fields which are typically spatially smooth.

Loc-ETPF [11

]: Computing OT matrix T;(s) for each s € S decreases

discontinuities however still non-smooth and computationally demanding.

Example of applying localised PF assimilation updates to two-dimensional

Prior particle x!

Observations kod(s,s) py(s) Vs € S,b€1:B,
y,(sq) Vde1:D VseS. s €S ZQ py(s) =1Vse S We propose an alternative localised ETPF method which is able to maintain -
=1 - o spatial smoothness in the updated particles while also significantly reducing True state
the computational cost by requiring few OT problems to be solved.
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1D transformed stochastic turbulence model

As a test model we considered a bijective non-linear transformation of a
linear-Gaussian model. Specifically for a smooth bijection ¢ : X — X we
simulate a model with state update and observation operators

Hz) + v,

and Gaussian state and observation noise distributions p; and v;. We performed
exact inference in the underlying linear-Gaussian model using a Kalman filter
and pushed samples from the Gaussian filtering distributions through ¢ to get
exact samples from the non-Gaussian filtering distributions. For the base linear-
Gaussian model we used a 1D stochastic partial differential equation model of
turbulence on a periodic domain proposed in [12].
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spatial Gaussian process model:
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Examples proposed localised assimilation updates using two different partitions

of unity applied to spatial Gaussian process model example from above:
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Posterior particle x!
using 2D block PoU.
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The central panel shows a particle computed using a piecewise-constant PoU consisting of
non-overlapping rectangular blocks, with the resulting algorithm a ETPF variant of the blocked
PF of [10]. The resulting state particles show discontinuities reflecting the non-smooth PoU. The
right panel shows a particle computed using a PoU formed of smooth 2D ‘bump’ functions, with

the resulting particles maintaining the smoothness of the inputted prior state particles.
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