Background and motivation o oo	Aims and objectives	Stiffness estimation O O	Tissue excitation	Results and conclusions

Measuring tissue stiffness using ultrasound Final Project Presentation

Matthew Graham (mmg32@cam.ac.uk) Supervisor: Graham Treece

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Results and conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

- Elastic properties of tissue characteristic of some structures and pathologies
- Manual palpation effective, but only for large near-surface structures
- Ultrasound elastography images of tissue stiffness

Quasi-static ultrasound elastography

Quasi-static ultrasound elastography

Advantage

• Requires only standard ultrasound hardware (software-based)

Disadvantage

• Gives only relative stiffness values - qualitative assessment only

Dynamic ultrasound elastography

990

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Dynamic ultrasound elastography

Advantage

• Absolute stiffness values - quantitative assessment possible

Disadvantage

• Requires specialist hardware

To develop an ultrasound elastography method which:

gives absolute estimates of tissue stiffness using only standard ultrasound hardware

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aims and objectives

Stiffness estimati

Tissue excitation

Results and conclusions

Proposed method

Estimating stiffness: arrival time method

Shear wave speed

$$c_s = \sqrt{\frac{E}{3\rho}}$$

(c_s - shear wave speed, ρ - density, E - elastic modulus)

 $\begin{array}{l} \mbox{Cross-correlation based tracking of wave fronts} \Rightarrow \\ \mbox{Differences in arrival time of wave at different scan points} \Rightarrow \\ \mbox{Wave velocities from known separations of scan elements} \Rightarrow \\ \mbox{Elastic moduli (\sim stiffness$)} \end{array}$

Estimating stiffness: inversion method

Governing equation of motion

$$b \frac{\partial^2 u}{\partial t^2} = \frac{E}{3} \nabla^2 u$$

(u - displacements, t - time, ρ - density, E - elastic modulus)

Algebraic inversion under model assumptions

$$E \approx \frac{3}{n} \sum_{i=0}^{n} \rho \frac{\frac{\partial^2 u_i}{\partial t^2}}{\frac{\partial^2 u_i}{\partial x^2} + \frac{\partial^2 u_i}{\partial z^2}}$$

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Tissue excitation

Results and conclusions

Tests with tissue mimicking phantom

Tests with tissue mimicking phantom

Sac

Tests with tissue mimicking phantom

Aims and objective

Stiffness estimation

Tissue excitation

Results and conclusions

Probe motion

Probe

Acoustic gel layer

Tissue / phantom

・ロト ・四ト ・ヨト ・ヨト

э.

Probe motion

Probe decoupled from phantom surface

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Tissue excitation

Probe motion

Background and motivation Aims and obje 0 00

Wave propagation theory

• Vector displacement field **u** combination of irrotational component $\nabla \phi$ and equivoluminal component $\nabla \times \mathbf{p}$

$$\mathbf{u} = \nabla \phi + \nabla \times \mathbf{p}$$

- Typical distinction between shear and compressional waves misleading
- Wave velocity dependent on wavefront and medium geometry, $\sqrt{\frac{E}{3\rho}}$ only a lower bound
- Minimising reflections and resulting interference reduces discrepancy

Aims and objectiv

Stiffness estimatio 0 Tissue excitation

Results and conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Wave reflections

Original aligned probe orientation

Aims and objectiv

Stiffness estimati o Tissue excitation

Results and conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Wave reflections

Non-aligned probe orientation

Wave reflections

Displacement responses with probe angled to phantom walls

▲ロ → ▲ □ → ▲ 三 → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results and conclusions

	Phantom		Calf muscle	
	$c_s \ / \ { m ms}^{-1}$	E / kPa	$c_s \ / \ { m ms}^{-1}$	E / kPa
Actual	2.9	25	2.3*	15*
Estimated	3.9	45	3.6	38

(* typical figure)

- Plausible shear modulus values measured in phantom and in-vivo
- Attempts at localisation not successful
- Unclear whether direct inversion viable

Background and motivation 0 00	Aims and objectives	Stiffness estimation O O	Tissue excitation	Results and conclus
	Т	hank-you		

Any questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?