
Inference in differentiable generative models

Matthew Graham 1 Amos Storkey 1

Abstract
Many generative models can be expressed as a dif-
ferentiable function of random inputs drawn from
a known probability distribution. This framework
includes both learnt parametric generative models
and a large class of procedurally defined simu-
lator models. We present a method for perform-
ing efficient Markov chain Monte Carlo (MCMC)
inference in such models when conditioning on
observations of the model output. For some mod-
els this offers an asymptotically exact inference
method where Approximate Bayesian Computa-
tion might otherwise be employed. We use the
intuition that inference corresponds to integrating
a density across the manifold corresponding to the
set of inputs consistent with the observed outputs.
This motivates the use of a constrained variant
of Hamiltonian Monte Carlo which leverages the
smooth geometry of the manifold to move be-
tween inputs exactly consistent with observations.

1. Introduction
There has been a long interest in probabilistic models which
are defined implicitly (4; 7; 12) - that is where we can gener-
ate random values for the latent z ∈ Z and observed x ∈ X
variables in the model, but we cannot tractably evaluate the
probability distribution Px,z of those variables and more
specifically its density px,z. Although implicit models are
challenging from an inferential perspective, they are ubiq-
uitous in science and engineering in the form of simulator
models of physical systems. Typically simulators are speci-
fied procedurally in code with any stochasticity introduced
by draws from a random number generator. Recently im-
plicit models have also been the subject of much interest
in the machine learning community due to the advent of
effective adversarial training methods (10) and the gains in
modelling flexibility offered by dropping the requirement of
being able to compute a density on model outputs (22; 29).

1University of Edinburgh, Edinburgh, United Kingdom. Corre-
spondence to: Matthew Graham <m.m.graham@ed.ac.uk>.

ICML 2017 Workshop on Implicit Models. Copyright 2017 by the
author(s).

Any probabilistic model that we can programmatically gen-
erate values from can be expressed in the form of a deter-
ministic function which takes as input a (possibly variable
length) vector of random inputs sampled from a known dis-
tribution. This observation just corresponds to stating that
we can track all of the calls to a random number generator in
a program, and that given the values sampled from the ran-
dom number generator all of the operations then performed
by the program are deterministic.

To formalise this intuition we introduce some notation. We
define an input space U and an associated vector of input
random variables u ∈ U which takes on values in this space,
with u having a known distribution Pu = P . We then define
generator functions g

x
: U → X and g

z
: U → Z such that

we have x = g
x
(u) and z = g

z
(u). A common special case

is when the input space is partitioned U = U1 × U2 and the
unobserved variables z are generated from a subset of the
random inputs u1 ∈ U1 (e.g. corresponding to sampling
from a prior distribution over the parameters of a simulator
model), with the observed variables x then generated from a
function g

x|z : Z × U2 → X , i.e. x = g
x|z(gz(u1), u2). In

Appendix A in the supplementary material we show factor
graphs visualising these model structures.

We define differentiable generative models as the restricted
class of models whereby

1. U ⊆ RM and X ⊆ RNx

2. P has density ρ with respect to the Lebesgue measure,
3. ∂ρ

∂u exists P -almost everywhere,
4. ∂g

x

∂u exists and is full row-rank P -almost everywhere.
In this paper we outline a MCMC method for performing
inference in models meeting these conditions. This is an
abridged version of a published conference paper (13).

2. Approximate Bayesian Computation
Approximate Bayesian Computation (ABC) (4; 20) is a
popular approach for performing approximate inference
generative models where we do not have access to an
explicit joint density px,z but can generate (x, z) sam-
ples. In ABC the simulated observed outputs x are de-
coupled from the observations x̄ by a noise model or kernel
p
x̄ | x(x̄ |x) = kε(x̄; x) with tolerance parameter ε, e.g.
kε(x̄; x) ∝ I[|x̄− x| < ε]/εNx (uniform ball kernel) or
kε(x̄; x) = N

(
x̄ |x, ε2I

)
(Gaussian kernel).

Inference in differentiable generative models

The ABC posterior is then defined as

p
z | x̄(z | x̄; ε)) =

∫
X kε(x̄; x) p

x | z(x | z) pz(z) dx∫
X kε(x̄; x) px(x) dx

(1)

and we can express expectations of functions of the latent
variables z with respect to this approximate posterior

E[f(z) | x̄ = x̄; ε] =

∫
Z
f(z) p

z | x̄(z | x̄; ε) dz (2)

=

∫
Z
∫
X f(z) kε(x̄; x) p

x | z(x | z) pz(z) dx dz∫
Z
∫
X kε(x̄; x) p

x | z(x | z) pz(z) dx dz
.

Various Monte Carlo appproximate inference schemes can
be used to estimate this expectation. The simplest is to
generate a set of independent samples

{
x(s), z(s)

}S
s=1

from
Px, z

1 and use the ratio estimator

E[f(z) | x̄ = x̄; ε] ≈
∑S
s=1 f

(
z(s)

)
kε
(
x̄; x(s)

)∑S
s=1 kε

(
x̄; x(s)

) . (3)

In the case of a uniform ball kernel this corresponds to the
standard ABC reject algorithm, with expectations being
estimated as averages over the latent variable samples for
which the corresponding simulated outputs are within a
(Euclidean) distance of ε from the observations.

Alternatively a MCMC scheme can be used to estimate the
ABC posterior expectation in (2) (21). A Markov chain is
constructed with a stationary distribution with a density

p
x, z|x̄(x, z | x̄) ∝ kε(x̄; x) p

x | z(x | z) pz(z) (4)

by proposing a new state (x′, z′) given the current state
(x, z) by sampling z′ ∼ q(· |z) from some perturbative
proposal distribution q on Z and then generating a new
x′ ∼ p

x | z(· |z). This is then accepted with probability

a(x′, z′ |x, z) = min

[
1,
kε(x̄; x′)q(z | z′)pz(z′)
kε(x̄; x)q(z′ | z)pz(z)

]
, (5)

the overall transition operator leaving (4) stationary. The
samples of the chain state can then be used to compute
consistent estimators of (2).

For both the ABC reject and ABC MCMC schemes just de-
scribed, simulated observations x are independently gener-
ated from the conditional p

x | z(x | z) given the current latent
variables z. The observed values x̄ are a zero-measure set
in X under non-degenerate p

x | z(x | z) and so as ε→ 0 the
probability of accepting a sample / proposed move becomes
zero. Applying ABC with a non-zero ε therefore can be
seen as a practically motivated relaxation of the constraint
that true and simulated data exactly match, and hence the
‘approximate’ in Approximate Bayesian Computation.

1In ABC this usually involves generating z then simulating x

given z however more generally we can just sample from the joint.

3. Inference in the input space
Using our definitions x = g

x
(u) and z = g

z
(u) we can

reparametrise (2) as an integral over the input space to the
generative model

E[f(z) | x̄ = x̄; ε] ∝
∫
U
f ◦ g

z
(u) kε(x̄; g

x
(u)) ρ(u) du.

This indicates we can estimate ABC expectations by apply-
ing standard MCMC methods in the input space to construct
a chain with stationary distribution with density

πε(u) ∝ kε(x̄; g
x
(u)) ρ(u). (6)

We can also however consider the limit of ε→ 0. We have
that the kernel term kε(x̄; g

x
(u))→ δ(x̄− g

x
(u)) and so

E[f(z) | x = x̄] = lim
ε→0
{E[f(z) | x̄ = x̄; ε]} (7)

∝
∫
U
f ◦ g

z
(u) δ(x̄− g

x
(u)) ρ(u) du.

The Dirac delta term restricts the integral across the input
space U to an embedded, M −Nx dimensional, implicitly-
defined manifold g−1

x
[x̄] ≡ {u ∈ U : g

x
(u) = x̄}. By ap-

plying the the Co-Area Formula (9, §3.2.12) the integral
with respect to the Lebesgue measure across U in (7) can be
rewritten as integral across the embedded manifold g−1

x
[x̄]

with respect the Hausdorff measure for the manifold

E[f(z) | x = x̄] ∝ (8)∫
g−1
x [x̄]

f ◦ g
z
(u)

∣∣∣∣∂gx∂u

∂g
x

∂u

T∣∣∣∣− 1
2

ρ(u) dHM−Nx(u).

Therefore if we construct a Markov chain {u(s)}Ss=1 re-
stricted to g−1

x
[x̄] and with an invariant distribution with

density with respect to the Hausdorff measure of g−1
x

[x̄]

π(u) ∝
∣∣∣∣∂gx∂u

∂g
x

∂u

T∣∣∣∣− 1
2

ρ(u) (9)

then if the chain is also aperiodic and irreducible we can
form MCMC estimators which converge in the limit S →∞

E

[
1

S

S∑
s=1

(
f ◦ g

z

(
u

(s)
))]

→ E[f (z) | x = x̄] (10)

Intuitively the determinant term in (9) adjusts for the change
in the infinitesimal ‘thickness’ (extent in directions orthog-
onal to the tangent space) of the manifold when mapping
through the generator function g

x
. The result (8) is given in

a slightly different form in (6).

A general framework for performing asymptotically exact
inference in differentiable generative models is therefore to
define MCMC updates which explore the target density (9)
on the pre-image manifold g−1

x
[x̄]. We propose here to use

a method which simulates the dynamics of a constrained
mechanical system.

Inference in differentiable generative models

4. Constrained Hamiltonian Monte Carlo
In Hamiltonian Monte Carlo (HMC) (8; 26) the vector vari-
able of interest u is augmented with a momentum variable
p ∈ RM . The momenta are defined to be independent of u
with a Gaussian distribuion N (0, I)2. The joint distribution
then has a density proportional to exp[−H(u,p)] where
H(u,p) = − log π(u) + 1

2p
Tp is the Hamiltonian. The

canonical Hamiltonian dynamic is described by

du

dt
=
∂H

∂p
= p,

dp

dt
= −∂H

∂u
=
∂ log π

∂u
. (11)

This dynamic is time-reversible, volume-preserving and
exactly conserves the Hamiltonian. Symplectic integrators
allow approximate integration of the Hamiltonian flow while
maintaining the time-reversibility and volume-preservation
properties (17). These properties make simulated Hamilto-
nian dynamics an ideal proposal mechanism for a Metropo-
lis MCMC method. The accept probability for a pro-
posal (up,pp) generated by simulating the dynamic forward
from (u,p) is exp

(
H(u, p)−H(up, pp)

)
. Typically the

change in the Hamiltonian will be small and so the proba-
bility of acceptance high.

In our case the system is subject to a constraint of the
form g

x
(u) − x̄ = 0. By introducing Lagrangian mul-

tipliers λi for each of the constraints, the Hamiltonian
for a constrained system can be written as H(u,p) =
− log π(u)+ 1

2p
Tp+λT(g

x
(u)− x̄), with a corresponding

constrained Hamiltonian dynamic

du

dt
= p,

dp

dt
=
∂ log π

∂u
− ∂g

x

∂u

T

λ, (12)

subject to g
x
(u) = x̄,

∂g
x

∂u
p = 0. (13)

A popular numerical integrator for simulating constrained
Hamiltonian dynamics is RATTLE (2). This a generalisation
of the Störmer-Verlet (leapfrog) integrator typically used
in standard HMC with additional projection steps in which
the Lagrange multipliers λ are solved for to satisfy the
conditions (13). RATTLE is symplectic on the constraint
manifold and is time-reversible and volume-preserving (18).

The use of constrained dynamics in HMC has been pro-
posed several times. In the molecular dynamics literature,
both (14) and (19) suggest using a simulated constrained
dynamic within a HMC framework. Most relevantly here
(5) proposes using a constrained HMC variant to perform
inference in distributions defined on implicitly defined mani-
folds. The authors of (5) give sufficient conditions onH and
g
x

for the transition operator to be irreducible and aperiodic:
that H is C2 continuous, and g−1

x
[x̄] is a connected smooth

and differentiable manifold and ∂g
x

∂u has full row-rank ev-
erywhere.

2For notation simplicity we assume an identity mass matrix.

5. Method
Our constrained HMC implementation is shown in Ap-
pendix C in Algorithm 1. We use a generalisation of the
RATTLE scheme to simulate the dynamic. The inner up-
dates of the state to solve for the geodesic motion on the
constraint manifold are split into multiple smaller steps.
This is a special case of the scheme described in (16) and
allows more flexibility in choosing an appropriately small
step-size to ensure convergence of the iterative solution of
the equations projecting on to the constraint manifold while
still allowing a more efficient larger step size for updates to
the momentum.

Each inner geodesic time-step involves making an uncon-
strained update ũ← u−δtp and then projecting ũ back on
to g−1

x
[x̄] by solving for λ which satisfy g

x
(ũ− ∂g

x

∂u

T
λ) =

x̄. Here we use a-Newton method for solving the system
of equations in the projection step. The true Newton up-
date would involve recalculating the Jacobian and solving a
dense linear system within the optimisation loop. Instead
we use a symmetric quasi-Newton update as proposed in
(3), the Jacobian matrix product ∂gx

∂u
∂g

x

∂u

T
evaluated at the

previous state used to condition the moves. This matrix
is positive-definite and a Cholesky decomposition can be
calculated outside the optimisation loop allowing cheaper
quadratic cost solves within the loop. For larger systems, the
Cholesky decomposition of the Jacobian matrix prodcut will
become a dominant cost, generally scaling cubically with
Nx. Conditional independency structure of many directed
generative models however allows a significantly reduced
quadratically scaling computational cost as explained in the
supplementary material in Appendix D.

In the Newton iteration projection step, convergence is sig-
nalled when the elementwise maximum absolute difference
‖g

x
(u) − x̄‖∞ is below a tolerance ε. This acts analo-

gously to the ε parameter in ABC methods, however here
we typically set this parameter to close to machine precision
(ε = 10−8 in our experiments) and so the approximation in-
troduced is comparable to that otherwise incurred for using
non-exact arithmetic.

6. Example: Lotka–Volterra model
As an example application of our method, we consider
inferring the posterior distribution of the parameters of a
stochastic predator-prey model given (simulated) observed
populations. In Appendices E and F we also show results
for 3D human pose and camera parameter inference given
2D joint position information and in-painting of missing
regions of digit images using a generative model trained
on MNIST. In all experiments Theano (28) was used to
specify the generator function and calculate the required
derivatives. Python code for the experiments is available

Inference in differentiable generative models

(a) (b) (c)

Figure 1. Lotka–Volterra (a) Observed predator-prey populations (solid) and ABC sample trajectories with ε = 10 (dashed) and
ε = 100 (dot-dashed). (b) Marginal empirical histograms for the (logarithm of the) four parameters (columns) from constrained HMC
samples (top) and ABC samples with ε = 10 (middle) and ε = 100 (bottom). Horizontal axes shared across columns. Red arrows indicate
true parameter values. (c) Mean ESS normalised by compute time for each of four parameters for ABC with ε = 10 (red), ε = 100
(green) and our method (blue). Error bars show ±3 standard errors of mean.

at https://git.io/dgm. We considered a stochastic
continuous state variant of the Lotka–Volterra model. In par-
ticular we consider parameter inference given a simulated
solution of the following stochastic differential equations

dx1 = (z1x1 − z2x1x2)dt+ dn1, (14)
dx2 = (−z3x2 + z4x1x2)dt+ dn2, (15)

where x1 represents the prey population, x2 the predator
population, {zi}4i=1 the system parameters and n1 and n2

zero-mean, unit variance white noise processes.

The observed data was generated with an Euler-Maruyama
discretisation, time-step 1, initial condition x(0)

1 = x
(0)
2 =

100 and z1 = 0.4, z2 = 0.005, z3 = 0.05, z4 = 0.001 (cho-
sen to give stable dynamics). The simulation was run for 50
time-steps with the observed outputs defined as the concate-
nated vector x =

[
x
(1)
1 x

(1)
2 ... x

(50)
1 x

(50)
2

]
. Log-normal priors

zi ∼ logN (−2, 1) were place on the system parameters.

We compared our method to various ABC approaches (§2)
using a uniform ball kernel with radius ε. ABC rejection
failed catastrophically, with no acceptances in 106 samples
even with a large ε = 1000. ABC MCMC with a Gaussian
proposal distribution q also performed very poorly with the
dynamic having zero acceptances over multiple runs of 105

updates for ε = 100 and getting stuck at points in param-
eter space over many updates for larger ε = 1000, even
with small proposal steps. Based on a method proposed in
the pseudo-marginal literature (25), we tried using alternat-
ing elliptical slice sampling (24) updates of the inputs u1

used to generate the parameters z = g
z
(u1) and remaining

random inputs u2 used to generate the observed variables
x = g

x|z(z,u2) given z. The slice sampling updates adapt
the size of steps made to ensure a move can always be
made. Using this method we were able to obtain reasonable
convergence over long runs for both ε = 100 and ε = 10.

The results are summarised in Figure 1. Figure 1a shows the
simulated data used as observations and ABC sample trajec-

tories for ε = 10 and ε = 100 . Though both samples follow
the general trends of the observed data there are large dis-
crepancies particularly for ε = 100. Our method in contrast
samples parameters generating trajectories matching the ob-
servations to within ε = 10−8 at all points. Figure 1b shows
the marginal histograms for the parameters. As would be
expected the inferred posterior on the parameters are signifi-
cantly more tightly distributed about the true values used to
generate the observations for our approach and the ε = 10
case compared to the results for ε = 100. Figure 1c shows
the relative sampling efficiency of our approach against
the ABC methods, as measured by the effective sample
sizes (ESS) (computed with R-CODA (27)) normalised by
run time averaged across 10 sampling runs for each method.
Despite the significantly higher run time per-sample in our
method, the reduced autocorrelation due to the much larger
moves made by the Hamiltonian dynamic give much higher
ESS even over the very approximate ε = 100 case.

7. Discussion
We have presented a framework for performing inference in
differentiable generative models. Though the constrained
HMC updates are computationally costly, the gradient-based
exploration of the state space can lead to significantly im-
proved sampling efficiency over simpler methods. Further
our approach in some cases allows asymptotically exact
inference in differentiable generative models where ABC
methods might otherwise be used. In our experiments we
were able to condition on high-dimensional observations
without the need for dimensionality reduction with summary
statistics however if informative summaries are available
and correspond to differentiable functions of the observa-
tions they can be exploited in our method by adding them
to the generator definition. As well as being of practical im-
portance itself, our approach should be useful in providing
‘ground truth’ inferences in test models to assess the affect
of the approximations used in ABC methods.

https://git.io/dgm

Inference in differentiable generative models

References
[1] I. Akhter and M. J. Black. Pose-conditioned joint

angle limits for 3D human pose reconstruction. In
IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[2] H. C. Andersen. RATTLE: A velocity version of the
SHAKE algorithm for molecular dynamics calcula-
tions. Journal of Computational Physics, 1983.

[3] E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel.
Algorithms for constrained molecular dynamics. Jour-
nal of computational chemistry, 1995.

[4] M. A. Beaumont, W. Zhang, and D. J. Balding. Ap-
proximate Bayesian computation in population genet-
ics. Genetics, 2002.

[5] M. A. Brubaker, M. Salzmann, and R. Urtasun. A fam-
ily of MCMC methods on implicitly defined manifolds.
In International Conference on Artificial Intelligence
and Statistics, 2012.

[6] P. Diaconis, S. Holmes, and M. Shahshahani. Sam-
pling from a manifold. In Advances in Modern Statisti-
cal Theory and Applications, pages 102–125. Institute
of Mathematical Statistics, 2013.

[7] P. J. Diggle and R. J. Gratton. Monte Carlo methods of
inference for implicit statistical models. Journal of the
Royal Statistical Society. Series B (Methodological),
pages 193–227, 1984.

[8] S. Duane, A. D. Kennedy, B. J. Pendleton, and
D. Roweth. Hybrid Monte Carlo. Physics Letters
B, 1987.

[9] H. Federer. Geometric measure theory. 1969.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural
Information Processing Systems, 2014.

[11] C. C. Gordon, T. Churchill, C. E. Clauser, B. Bradt-
miller, J. T. McConville, I. Tebbets, and R. A. Walker.
Anthropometric survey of US army personell: Final
report. Technical report, United States Army, 1988.

[12] C. Gourieroux, A. Monfort, and E. Renault. Indirect
inference. Journal of applied econometrics, 8(S1):S85–
S118, 1993.

[13] M. Graham and A. Storkey. Asymptotically exact infer-
ence in differentiable generative models. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics, pages 499–508, 2017.

[14] C. Hartmann and C. Schutte. A constrained hybrid
Monte-Carlo algorithm and the problem of calculating

the free energy in several variables. ZAMM-Zeitschrift
fur Angewandte Mathematik und Mechanik, 2005.

[15] D. P. Kingma and M. Welling. Auto-encoding varia-
tional Bayes. In Proceedings of the 2nd International
Conference on Learning Representations, 2013.

[16] B. Leimkuhler and C. Matthews. Efficient molecu-
lar dynamics using geodesic integration and solvent–
solute splitting. In Proceedings of the Royal Society A,
2016.

[17] B. Leimkuhler and S. Reich. Simulating Hamiltonian
dynamics. Cambridge University Press, 2004.

[18] B. J. Leimkuhler and R. D. Skeel. Symplectic numer-
ical integrators in constrained Hamiltonian systems.
Journal of Computational Physics, 1994.

[19] T. Lelièvre, M. Rousset, and G. Stoltz. Langevin
dynamics with constraints and computation of free en-
ergy differences. Mathematics of computation, 2012.

[20] J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder.
Approximate Bayesian computational methods. Statis-
tics and Computing, 2012.

[21] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré.
Markov chain Monte Carlo without likelihoods. Pro-
ceedings of the National Academy of Sciences, 2003.

[22] S. Mohamed and B. Lakshminarayanan. Learning in
implicit generative models. In Proceedings of the In-
ternational Conference on Learning Representations,
2017.

[23] I. Murray. Differentiation of the Cholesky decomposi-
tion. arXiv preprint arXiv:1602.07527, 2016.

[24] I. Murray, R. P. Adams, and D. J. MacKay. Ellipti-
cal slice sampling. In The Proceedings of the 13th
International Conference on Artificial Intelligence and
Statistics, volume 9 of JMLR: W&CP, pages 541–548,
2010.

[25] I. Murray and M. M. Graham. Pseudo-marginal slice
sampling. In International Conference on Artificial
Intelligence and Statistics, 2016.

[26] R. M. Neal. MCMC using Hamiltonian dynamics,
pages 113–162. 2011.

[27] M. Plummer, N. Best, K. Cowles, and K. Vines.
CODA: Convergence diagnosis and output analysis
for MCMC. R News, 6(1):7–11, 2006.

[28] Theano development team. Theano: A Python frame-
work for fast computation of mathematical expressions.
arXiv e-prints, abs/1605.02688, 2016.

[29] D. Tran, R. Ranganath, and D. M. Blei. Deep
and hierarchical implicit models. arXiv preprint
arXiv:1702.08896, 2017.

Inference in differentiable generative models

u

ρ

z

x

g
x,z

(a)

z

x

px,z

(b)

u1
ρ1

z

g
z

x

g
x|zu2

ρ2

(c)

z

pz

x

px|z

(d)

Figure 2. Factor graphs of undirected and directed generative models. Circular nodes represent random variables, filled square nodes
probabilistic factors and unfilled diamonds deterministic factors. Shaded circular nodes are observed. Panel (a) shows the more general
undirected model case in which observed variables x and latent variables z are jointly generated from inputs u by mapping through a
function g

x,z, with (b) showing an equivalent factor graph after marginalising out the inputs u. Panel (c) shows the directed model case
in which we first generate the latent variables z from a subset of the inputs u1 then generate the observed variables x from z and the
remaining inputs u2, with (d) showing a resulting natural directed factorisation of joint distribution when marginalising out u1 and u2.

A. Directed and undirected generative models
In Section 1 we described the general case of a generative model in which both the observed and unobserved variables
being jointly generated by a function g

x,z. This structure is shown as a factor graph in Figure 2a and a corresponding factor
graph for just x and z with u marginalised out shown in Figure 2b. As briefly mentioned in Section 1, a common special
case is when the input space is partitioned U = U1 × U2 and the unobserved variables z are generated from a subset of the
random inputs u1 ∈ U1, with the observed variables x then generated from a function g

x|z which takes as input both the
remaining random variables u2 ∈ U2 and the generated unobserved variables z, i.e. x = g

x|z(z,u2) = g
x|z(gz(u1), u2).

This is illustrated as a factor graph in Figure 2c. Again a corresponding factor graph with u marginalised out is shown in
Figure 2d, with in this case the structure of the generator making a directed factorisation in terms pz and p

x|z natural.

B. Evaluating the target density and its gradient
For the Hamiltonian dynamics we need to be able to evaluate the logarithm of the target density up to an additive constant
and its gradient with respect to u. Dropping the dependence of the Jacobian on u for brevity we have that

log π(u) = log ρ(u)− 1

2
log
∣∣Jg

x

Jg
x

T
∣∣− logZ (16)

where Z is the normalising constant for the density which is independent of u.

In general evaluating the determinant |Jg
x

Jg
x

T| has computational cost which scales as O(MN2
x

). However as part of
the constrained dynamics updates the lower-triangular Cholesky decomposition L of Jg

x

Jg
x

T is calculated. Using basic
properties of the matrix determinant we have

log π(u) = log ρ(u)−
Nx∑
i=1

log(Lii)− logZ. (17)

Given the Cholesky factor L we can therefore can evaluate the logarithm of the target density up to an additive constant at a
marginal computational cost that scales linearly with Nx. For the gradient we can use reverse-mode AD to calculate the
gradient of (17) with respect to u. This requires propagating partial derivatives through the Cholesky decomposition (23);
efficient implementations for this are present in many automatic differentiation frameworks.

Alternatively using the standard result for derivative of a log determinant and the invariance of the trace to cyclic permutations
we have that the gradient of the log determinant term in (16) can be manipulated in to the form

1

2

∂

∂ui
log
∣∣Jg

x

Jg
x

T
∣∣ = trace

((
Jg

x

Jg
x

T)−1 ∂Jg
x

∂ui
Jg

x

T
)

(18)

= trace

(
Jg

x

T(Jg
x

Jg
x

T)−1 ∂Jg
x

∂ui

)
(19)

We denote the matrix vectorisation operator vec such that for a M × N matrix A, we have vec(A) =

[A1,1, . . . , AM,1, A1,2, . . . , AN,M]
T. Then as the trace of a matrix product defines an inner product we have that

Inference in differentiable generative models

trace(AB) = vec(A)Tvec(B). We can therefore write the gradient of the log determinant term as

1

2

∂

∂u
log
∣∣Jg

x

Jg
x

T
∣∣ = vec

(
Jg

x

T(Jg
x

Jg
x

T)−1
)T ∂vec

(
Jg

x

)
∂u

(20)

The matrix inside the left vec operator can be computed once by reusing the Cholesky factorsation of Jg
x

Jg
x

T to solving the
system of equations by forward and backward substitution. We then have an expression in the form of a vector-Jacobian
product which is provided as an efficient primitive in many AD frameworks, e.g. as Lop in Theano, and like the gradient
(which is actually a special case) can be evaluated at cost which is a constant over head of evaluating the forward function
(i.e. the cost of evaluating Jg

x

here).

C. Constrained Hamiltonian Monte Carlo implementation

Algorithm 1 Constrained HMC in a differentiable generative model
Require:
g
x

: observed variable generator function;
φ : potential energy function φ(u) = − log ρ(u) + 1

2
log |Jg

x
(u)Jg

x
(u)|;

x : observed data values being conditioned on;
u : current chain state (model inputs) with ‖g

x
(u)− x‖∞ < ε;

(ϕ,J ,L) : cached values of φ, Jg
x

and chol
(
Jg

x
Jg

x

T) evaluated at u;
ε : convergence tolerance for Newton iteration;
M : number of Newton iterations to try before rejecting for non-convergence;
δt : integrator time step;
Ns : number of time steps to simulate;
Ng : number of geodesic steps per time step.

Ensure:
un : new chain state with ‖g

x
(un)− x‖∞ < ε;

(ϕn,Jn,Ln) : values of φ, Jg
x

and chol
(
Jg

x
Jg

x

T) evaluated at new un.

n ∼ N (0, I)
p← PROJECTMOM(n,J ,L)
up,pp,Jp,Lp ← SIMDYN(u,p,J ,L)
ϕp ← φ(u)
r ∼ U(0, 1)
pa ← exp

(
ϕ+ 1

2
pTp− ϕp − 1

2
pTppp

)
if r < pa
un, ϕn,Jn,Ln ← up, ϕp,Jp,Lp

else
un, ϕn,Jn,Ln ← u, ϕ,J ,L

function SIMDYN(u, p, J , L)
p̃← p− δt

2
∇φ(u)

p← PROJECTMOM(p̃,J ,L)
u,p,J ,L← SIMGEO(u,p,J ,L)
for s ∈ {2 . . . Ns}
p̃← p− δt∇φ(u)
p← PROJECTMOM(p̃,J ,L)
u,p,J ,L← SIMGEO(u,p,J ,L)

p̃← p− δt
2
∇φ(u)

p← PROJECTMOM(p̃,J ,L)
return u,p,J ,L

function PROJECTMOM(p, J , L)
return p− JTL−TL−1Jp

function PROJECTPOS(u, J , L)
δ ← g

x
(u)− x

i← 0
while ‖δ‖∞ > ε ∧ i < M
u← u− JTL−TL−1δ
δ ← g

x
(u)− x

i← i+ 1
if i =M

raise REJECTMOVE
return u

function SIMGEO(u, p, J , L)
for i ∈ {1 . . . Ng}
ũ← u+ δt

Ng
p

u′ ← PROJECTPOS(ũ,J ,L)
J ← Jg

x
(u′)

L← chol
(
JJT)

p̃← Ng

δt
(u′ − u)

p← PROJECTMOM(p̃,J ,L)
ur ← u′ − δt

Ng
p

ur ← PROJECTPOS(ur,J ,L)
if ‖u− ur‖∞ >

√
ε

raise REJECTMOVE
u← u′

return u,p,J ,L

Inference in differentiable generative models

z

g
z

u1
ρ1

xi

g
xi|zu2,i

ρ2,i

i ∈ {1 ... N}

(a) Independent observations

z

g
z

u1
ρ1

u2,1

ρ2,1

f1

x0

f0

u2,0

ρ2,0

x1

f2

u2,2

ρ2,2

x2

fT

u2,T

ρ2,T

xT

(b) Markovian observations

Figure 3. Factor graphs of examples of structured directed generative models.

D. Exploiting model structure
For larger systems, the Cholesky decomposition of the constraint Jacobian matrix product Jg

x

Jg
x

T (line 42) will become a
dominant cost, generally scaling cubically with Nx. In many models however conditional independency structure will mean
that not all observed variables x are dependent on all of the input variables u and so the Jacobian Jg

x

has sparsity structure
which can be exploited to reduce this worst-case cost.

In particular two common cases are directed generative models in which the observed variables x can be split into groups
{xg}Gg=1 such that all of the xi are either conditionally independent given the latent variables z = g

z
(u1) (for example

independent and identically distributed observations), or each xi is conditionally independent of all {xj}j<i−1 given xi−1

and z (most commonly Markov chains for example from a SDE model though observations with more general tree structured
dependencies can also be ordered into this form). Figure 3 shows factor graphs for directed generative models with these
two structures, with the conditional independencies corresponding to each xi being generated as a function of only a subset
u2,i of the random input variables u2. Equivalently these structures correspond to generator functions g

x
which can be

expressed in one of the two forms

xi = g
xi|z(z,u2,i) (independent) (21)

xi = f i
(
z,f i−1(z,f i−2(...),u2,i−1),u2,i

)
= g

xi|z(z,u2,≤i) (Markov). (22)

For models with these structures the generator Jacobian Jg
x

= [∂gx

∂u1
| ∂gx

∂u2
] has a component ∂g

x

∂u2
which is either block-

diagonal (independent) or block-triangular (Markov). Considering first the simplest case where each (xi,u2,i) pair are

single dimensional, the Cholesky factor of Jg
x

Jg
x

T = ∂g
x

∂u1

∂g
x

∂u1

T
+ ∂g

x

∂u2

∂g
x

∂u2

T
can then be computed by low-rank Cholesky

updates of the triangular / diagonal matrix ∂g
x

∂u2
with each of the columns of ∂g

x

∂u1
. As dim(u1) = L is often significantly

less than the number of observations being conditioned on Nx, the resulting O(LN2
x

) cost of the low-rank Cholesky updates
is a significant improvement over the original O(N3

x
). For cases in which each (xi,u2,i) pair are both vectors of dimension

D (i.e. Nx = GD) and so ∂g
x

∂u2
is block diagonal / triangular, then the Cholesky factorisation of ∂g

x

∂u2

∂g
x

∂u2

T can be computed

at a cost O(GD3) for block diagonal, and O(G2D3) for block triangular ∂g
x

∂u2
, with then again O(LN2

x
) cost low-rank

updates of this Cholesky factor by the columns of ∂g
x

∂u1
performed. When xi and u2,i are vectors of differing dimensions,

with generally in this case dim(u2,i) > dim(xi) due to the requirement the total number of random inputs M is at least Nx,
then though we could choose a subset of each u2,i of equal dimension to xi so as to identify a block-triangular component,
generally any gain from exploiting this structure will be minimal and in practice it seems likely to be more efficient to
compute the Cholesky of Jg

x

Jg
x

T directly.

E. Human pose and camera model inference
As a second experiment we considered inferring a three-dimensional human pose and camera model from two-dimensional
projections of joint positions. We used a 19 joint skeleton model, with a learnt prior distribution over poses parametrised
by 47 local joint angles za. The pose model was learnt from the PosePrior motion capture data-set (1) with a Gaussian
variational autoencoder (VAE) (15) trained to match the distribution of the motion capture joint angle data. The circular

Inference in differentiable generative models

uh

N (0, I)

m1

k1

m2

k2

r1

u1

N (0, I)

r2

u2
N (0, I)

za

ub

N (0, I)

zb

p

ux
N (0, I)

x

uc zc

N (0, I)

C

Figure 4. Factor graph of human pose differentiable generative model. The operations corresponding to the deterministic nodes (�) in the
graph are described in Algorithm 2.

(a) (b)

Figure 5. Human pose (a) RMSEs of 3D pose posterior mean estimates given binocular projections, using samples from our method
(blue) versus running HMC in hierarchical model (red) for three different scenes sampled from the prior. Horizontal axes show computation
time to produce number of samples in estimate. Solid curves are average RMSE over 10 runs with different seeds and shaded regions show
±3 standard errors of mean. (b) Orthographic projections (top: front view, bottom: side view) of 3D poses consistent with monocular
projections. Left most pair (black) shows pose used to generate observations, right three show constrained HMC samples.

topology of the angular data is poorly matched by the Euclidean space a Gaussian VAE typically learns a distribution on,
and simply ‘unwrapping’ the angles to e.g. [−π, π) leads to unnatural discontinuities at the ±π cut-point, this both making
the initial learning problem challenging (as there is no in-built prior knowledge of continuity across the cut-point) and
tending to lead to a learned latent space less amenable to MCMC inference as ‘nearby’ poses with one or more joint angles
on opposite sides of the cut-point will likely end up corresponding to points far apart in the latent space.

During training we therefore mapped each vector of 47 joint angles z(i)
a (corresponding to a single motion capture datapoint)

to a pair of 47-dimensional vectors (r
(i)
1 , r

(i)
2) by sampling a Gaussian random vector n(i) ∼ N (0, I) and then computing

r
(i)
1 = expn(i) � cos z

(i)
a and r(i)

2 = expn(i) � sin z
(i)
a and training the VAE to maximise (a variational lower bound)

on the joint marginal density of the {r(i)
1 , r

(i)
2 }i pairs. At the cost of doubling the dimension, this leads to an embedding in

a Euclidean space which does not introduce any arbitary cut-points and empirically seemed to lead to better sample quality
from the learned generative model compared to learning the angles directly. Given the trained model we can generate a vector
of angles za using the model by sampling a Gaussian code (latent representation) vector uh from N (0, I) then sampling a
pair of 47-dimensional vectors r1 and r2 from the learnt Gaussian decoder model given uh (and further Gaussian random
input vectors u1 and u2), and finally recovering an angle by computing za = atan2(r2, r1). The resulting distribution on za

is only implicitly defined, but the overall generative model is differentiable with respect to the input vectors uh, u1 and u2.

The PosePrior motion capture data includes recordings from only a relatively small number of distinct actors and so limited
variation in the ‘bone-lengths’ of the skeleton model. Therefore a serparate log-normal model for the bone lengths zb was
fitted using data from the ANSUR anthropometric data-set (11), due to symmetry in the skeleton thirteen independent lengths

Inference in differentiable generative models

Algorithm 2 Human pose model generator functions
Require:
{W `, b`}L`=0 : parameters of learnt differentiable network model of pose angles;
µb, Σ : mean and covariance of skeleton bone lengths;
µc,:2, σc,:2 : means and standard deviations of camera world x, y coordinates;
µc,2, σc,2 : mean and standard deviation of logarith of camera world z coordinate;
ε : image joint position observation noise standard deviation;
JOINTPOSITIONS : maps pose angles and bone lengths to joint positions;
CAMERAMATRIX : maps camera coordinates to projective camera matrix;
PROJECT : uses camera matrix to map world coordinates to image coordinates;
PARTITION : partitions a vector in a specified number of equal length parts;
FLATTEN : flattens a multidimensional array to a vector.

function g
z
([uh; u1; u2; ub; uc])

hL ← DIFFNET(uh)
m1,k1,m2,k2 ← PARTITION(hL, 4)
r1 ← exp(k1)� u1 +m1

r2 ← exp(k2)� u2 +m2

za ← atan2(r2, r1)
zb ← exp(µb + Σbub)
zc,:2 ← σc,:2 � uc,:2 + µc,:2
zc,2 ← exp(σc,2uc,2 + µc,2)
return [za; zb; zc]

function DIFFNET(uh)
h0 ← tanh(W 0uh + b0)
for ` ∈ {1 ... L− 1}

h` ← tanh(W `h`−1 + b`) + h`−1

returnWLhL−1 + bL
function g

x|z([za; zb; zc], ux)
P← JOINTPOSITIONS(za, zb)
C← CAMERAMATRIX(zc)
X← PROJECT(C,P)
return FLATTEN(X) + εux

being specified. A simple pin-hole projective camera model with three position parameters zc and fixed focal-length was
used3. A log-normal prior distribution was placed on the depth co-ordinate zc,2 to enforce positivity with normal priors on
the other two co-ordinates zc,0 and zc,1.

Given a generated triplet of joint-angles, bone length and camera parameters za, zb and zc, a simulated two-dimensional
projection of the skeleton x is produced by first mapping the joint-angles and bone-lengths to a 4 × 19 matrix of joint
positions P in (homegeneous) world-coordinates by recursing through the skeleton tree. A 3× 4 projective camera matrix C

is generated from zc and then used to project the world-coordinate joint positions to a 2× 19 matrix X of joint positions in
two-dimensional image-coordinates. The projected positions matrix X is flattened to a vector and a Gaussian vector with
standard deviation ε added to the projected position vector to give the 19 × 2 = 38 dimensional observed vector x. The
noise standard deviation ε is chosen so that the noise in the projected joint positions is non-obvious in generated projections.
The overall corresponding model generator functions g

x|z and g
z

are described procedurally in Algorithm ?? and a factor
graph summarising the relationships between the variables in the model shown in Figure 4.

Although the Gaussian observed output noise is necessarily not needed to apply our proposed constrained HMC method as
the generator without the final additive noise still defines a valid differentiable generative model, using the noisy observation
model means that an explicit hierarchical joint density on is defined on {x, uh, r1, r2, zb, zc} allowing comparison of
our constrained HMC method with (non-constrained) HMC as a baseline. Further adding noise to the output ensures the
generator Jacobian is full-rank everywhere and also significantly simplifies the process of finding an initial u such that the
generated x matches observations.

We first considered binocular pose estimation, with the variables defining the three-dimensional scene information za, zb and
zc, inferred given a pair of two-dimensional projections from two simulated cameras with a known offset in their positions
(in this case the generator function is adjusted accordingly to output an 19× 2× 2 = 76 dimensional observed vector x
corresponding to the concatenation of the flattened projected joint positions from both ‘cameras’). In this binocular case, the
disparity in projected joint positions between the two projections gives information about the distances of the correspondings
joints from the image plane in the depth direction and so we would expect the posterior distribution on the three-dimensional
pose to be tightly distributed around the true values used to generate the observations. We compared our constrained HMC
method to running standard HMC on the conditional density of {uh, r1, r2, zb, zc} given x.

3The camera orientation was assumed fixed to avoid replicating the degrees of freedom specified by the angular orientation of the root
joint of the skeleton: only the relative camera–skeleton orientation is important.

Inference in differentiable generative models

(a) Constrained HMC samples (b) HMC in hierarchical model samples

Figure 6. MNIST In-painting samples. The top black-on-white quarter of each image is the fixed observed region and the remaining
white-on-black region the proposed in-painting. In left-right, top-bottom scan order the images in (a) are consecutive samples from a
constrained HMC run; in (b) the images are every 40th sample from a HMC run to account for the ∼ 40× shorter run-time per sample.
All images in this run are show in Figure 7.

Figure 5a shows the root mean squared error (RMSE) between the posterior mean estimate of the three-dimensional joint
positions and the true positions used to generate the observations as the number of samples included in the estimate increases
for three test scenes. For both methods the horizontal axis has been scaled by run time. The constrained HMC method
(blue curves) tends to give position estimates which converge more quickly to the true position. In this case standard HMC
performs relatively poorly despite the signficantly cheaper cost of each integrator step compared to the constrained dynamics.
This is at least in part due to the small output noise standard deviation ε used which requires a small integrator step to be
used to maintain reasonable accept rates.

We also considered inferring 3D scene information from a single 2D projection. Monocular projection is inherently
information destroying with significant uncertainty to the true pose and camera parameters which generated the observations.
Figure 5b shows pairs of orthographic projections of 3D poses: the left most column is the pose used to generate the
projection conditioned on and the right three columns are poses sampled using constrained HMC consistent with the
observations. The top row shows front x–y views, corresponding to the camera view though with a orthographic rather than
perspective projection, the bottom row shows side z–y views with the z axis the depth from the camera. The dynamic is able
to move between a range of plausible poses consistent with the observations while reflecting the inherent depth ambiguity
from the monocular projection.

F. MNIST in-painting
As a final experiment we considered inferring in-paintings for a missing region of a digit image z given knowledge of the
rest of the pixel values x. A Gaussian VAE trained on MNIST was used as the generative model, with a 50-dimensional
hidden code h. We compared our method to running HMC in the known conditional distribution on h given x (z can then be
directly sampled from its Gaussian conditional distribution given h).

Example samples are shown in Figure 6. In this case the constrained and standard HMC approaches appear to be performing
similarly, with both able to find a range of plausible in-paintings given the observed pixels. Without cost adjustment the
standard HMC samples show greater correlation between subsequent updates, however for a fairer comparison the samples
shown were thinned to account for the approximately 40× larger run-time per constrained HMC sample. Although the
constrained dynamic does not improve efficiency here neither does it seem to hurt it.

Inference in differentiable generative models

Figure 7. All in-painted MNIST image samples from a single HMC run previously shown thinned by factor 40 in Figure 6b, with samples
in chain following left-to-right, top-to-bottom order.

