

Asymptotically exact inference in differentiable generative models

MATT GRAHAM (m.m.graham@ed.ac.uk) arxiv.org/abs/1605.07826

AMOS STORKEY (a.storkey@ed.ac.uk)

Problem: Inference in generative models

Given: Probabilistic model of

$$\mathbf{y}$$
: observed variables $\in \mathcal{Y} = \mathbb{R}^{N_y}$,

$$\mathbf{z}$$
: latent variables $\in \mathcal{Z} = \mathbb{R}^{N_z}$,

where we can only generate (y, z) pairs.

Task: Estimate conditional expectations

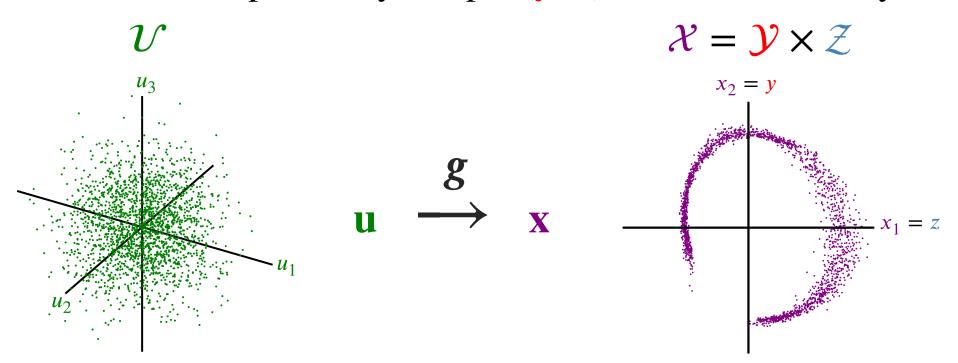
$$\mathbb{E}[f(\mathbf{z}) | \mathbf{y} = \mathbf{y}_{\text{obs}}] =$$

$$\int_{\mathcal{Z}} f(\mathbf{z}) \, \mathbb{p}_{\mathbf{z} | \mathbf{y}} [\mathbf{z} | \mathbf{y}_{\text{obs}}] \, \mathrm{d}\mathbf{z},$$

of latent variables given observations y_{obs} .

Differentiable generative models

Generative model, a.k.a. implicit or simulator model: A model where we can independently sample (y, z) but not necessarily evaluate $p_{y, z}$.



A generative model can be expressed in the form $\mathbf{u} \sim \rho$, $\mathbf{x} = \mathbf{g}(\mathbf{u})$ with

$$\mathbf{u}$$
: random inputs $\in \mathcal{U}$,

$$\rho: \mathcal{U} \to \mathbb{R}^+$$
: input density,

$$\mathbf{x} = (\mathbf{y}, \mathbf{z})$$
: generated outputs $\in \mathcal{X} = \mathcal{Y} \times \mathcal{Z}$, $\mathbf{g} : \mathcal{U} \to \mathcal{X}$: generator function.

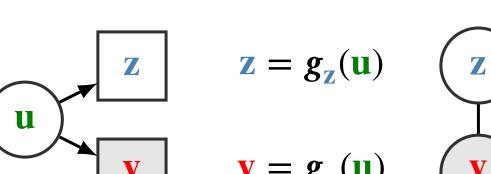
$$\rho: U \to \mathbb{R}^+$$
: input density,

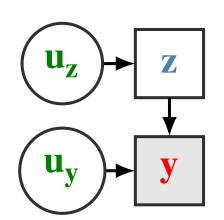
Directed generative model

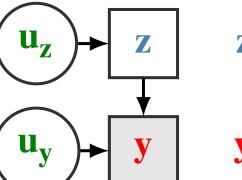
Here we will consider models where $\mathcal{U} = \mathbb{R}^M$ and \mathbf{g} is differentiable i.e. $\frac{\partial \mathbf{g}}{\partial u}$ exists a.e.

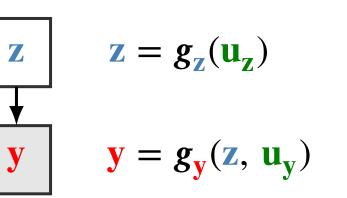
Undirected and directed models

Undirected generative model



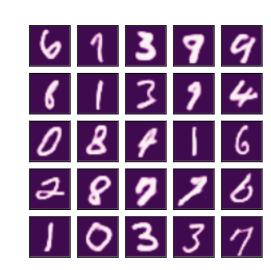


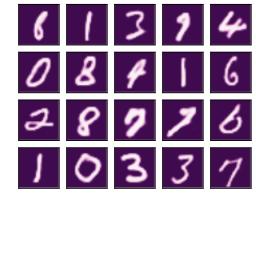


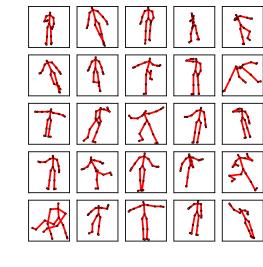


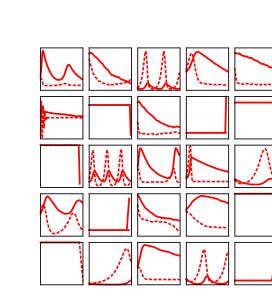
Examples of differentiable generative models

In all the examples below the input density is Gaussian $\rho(u) = \mathcal{N}(u; 0, I)$.









Decoder of a Gaussian Variational Autoencoder

$$\mathbf{x} = \mathbf{m}(\mathbf{u}_1) + \mathbf{s}(\mathbf{u}_1) \odot \mathbf{u}_2,$$

with *m* and *s* parameteric functions trained to match p_x to the distribution of a dataset e.g. MNIST digit images.

Pose generator, with learnt 3D pose parameter generators

joint angles bone lengths camera parameters
$$\mathbf{z}_a = f_a(\mathbf{u}_a)$$
 $\mathbf{z}_b = f_b(\mathbf{u}_b)$ $\mathbf{z}_c = f_c(\mathbf{u}_c)$

and a pin-hole camera model to generate observed 2D projections

^{2D proj.} camera matrix ^{3D pos.} obs. noise
$$\mathbf{r}_{i}(\mathbf{z}_{e}) \quad \mathbf{r}_{i}(\mathbf{z}_{a}, \mathbf{z}_{b}) + \sigma \mathbf{u}_{i} \quad \forall j \in \{1 \dots J\}$$

Continuous Lotka-Volterra predator-prey population model,

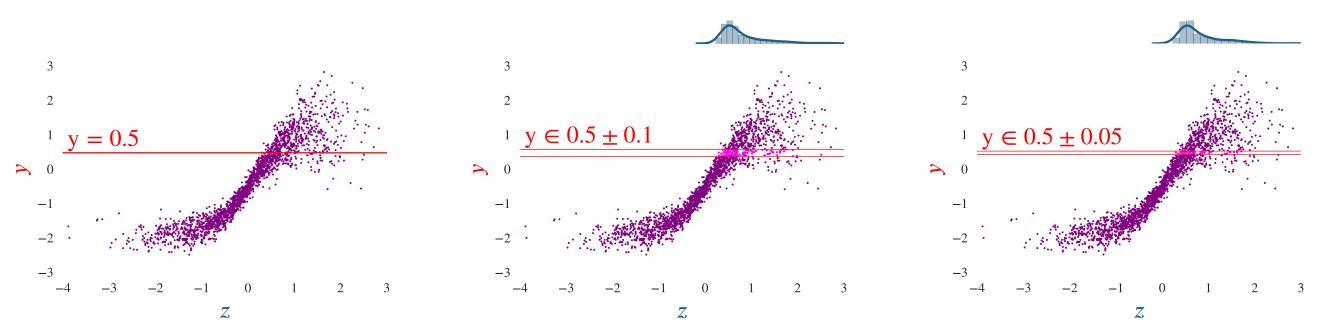
$$dy_1 = (z_1y_1 - z_2y_1y_2) dt + dn_1,$$

$$dy_2 = (-z_3y_2 + z_4y_1y_2) dt + dn_2.$$

Simulator for system can be expressed as a directed model

$$\mathbf{z} = \mathbf{g}_{\mathbf{z}}(\mathbf{u}_{\mathbf{z}}) = \exp(\boldsymbol{\sigma} \odot \mathbf{u}_{\mathbf{z}} - \boldsymbol{\mu})$$
: log-normal prior,
 $\mathbf{y} = \mathbf{g}_{\mathbf{y}}(\mathbf{z}, \mathbf{u}_{\mathbf{y}})$: Euler-Maruyama integration of SDEs.

Approximate Bayesian Computation (ABC)



Family of approximate inference methods for generative models. Typically applied to directed models where likelihood $p_{\mathbf{v}|\mathbf{z}}$ is unavailable.

Key idea: true observations \bar{y} are decoupled from simulated observed values yby a noise kernel $\mathbb{p}_{\bar{\mathbf{v}}|\mathbf{v}}[\bar{\mathbf{y}}|\mathbf{y}] = k_{\epsilon}(\bar{\mathbf{y}};\mathbf{y})$. Common choices for the kernel include

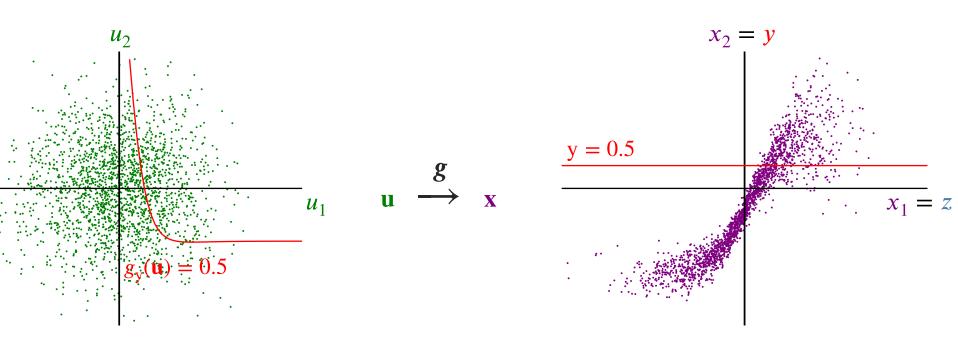
$$k_{\epsilon}(\bar{\boldsymbol{y}}; \, \boldsymbol{y}) \propto \mathbb{1}[|\bar{\boldsymbol{y}} - \boldsymbol{y}| < \epsilon]$$
 (uniform ball), $k_{\epsilon}(\bar{\boldsymbol{y}}; \, \boldsymbol{y}) = \mathcal{N}(\bar{\boldsymbol{y}}; \, \boldsymbol{y}, \, \epsilon^2 \boldsymbol{I})$ (Gaussian).

Kernel can be used to express approximate conditional expectations

$$\mathbb{E}[f(\mathbf{z}) | \mathbf{\bar{y}} = \mathbf{y}_{\text{obs}}; \epsilon] = \frac{1}{C} \iint_{\mathbf{v} \times \mathbf{z}} f(\mathbf{z}) k_{\epsilon}(\mathbf{y}_{\text{obs}}; \mathbf{y}) \, \mathbb{p}_{\mathbf{y}, \mathbf{z}}[\mathbf{y}, \mathbf{z}] \, \mathrm{d}\mathbf{y} \, \mathrm{d}\mathbf{z},$$

with asymptotic consistence in that $\lim_{\epsilon \to 0} \mathbb{E}[f(\mathbf{z}) | \bar{\mathbf{y}} = \mathbf{y}_{\text{obs}}; \epsilon] = \mathbb{E}[f(\mathbf{z}) | \mathbf{y} = \mathbf{y}_{\text{obs}}].$

Inference in the generator input space



The Law of the Unconscious Statistician can be used to rewrite the ABC conditional expectation as an integral over the generator input space \mathcal{U}

$$\mathbb{E}\big[f(\mathbf{z})\,|\,\mathbf{\bar{y}}=\mathbf{y}_{\mathrm{obs}};\,\epsilon\big]=\frac{1}{C}\int_{\mathcal{U}}f\circ\mathbf{g}_{\mathbf{z}}(\mathbf{u})\,k_{\epsilon}\big(\mathbf{y}_{\mathrm{obs}};\,\mathbf{g}_{\mathbf{y}}(\mathbf{u})\big)\,\rho(\mathbf{u})\,\mathrm{d}\mathbf{u}.$$

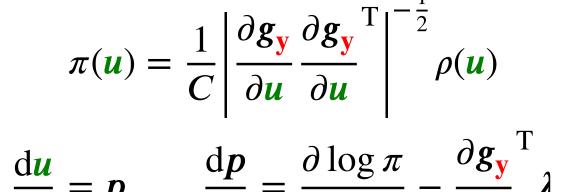
By taking the $\epsilon \to 0$ limit of the above and applying Federer's Co-Area Formula the exact conditional expectation can be expressed as an integral

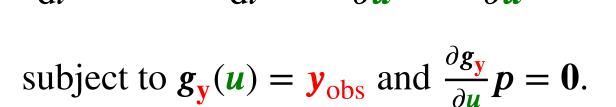
$$\mathbb{E}[f(\mathbf{z}) \mid \mathbf{y} = \mathbf{y}_{\text{obs}}] = \frac{1}{C} \int_{\mathcal{M}_{\mathbf{v}_{\text{obs}}}} f \circ \mathbf{g}_{\mathbf{z}}(\mathbf{u}) \left| \frac{\partial \mathbf{g}_{\mathbf{y}}}{\partial u} \frac{\partial \mathbf{g}_{\mathbf{y}}}{\partial u} \right|^{-\frac{1}{2}} \rho(\mathbf{u}) \mathcal{H}_{\mathcal{M}_{\mathbf{y}_{\text{obs}}}} \{ d\mathbf{u} \}.$$

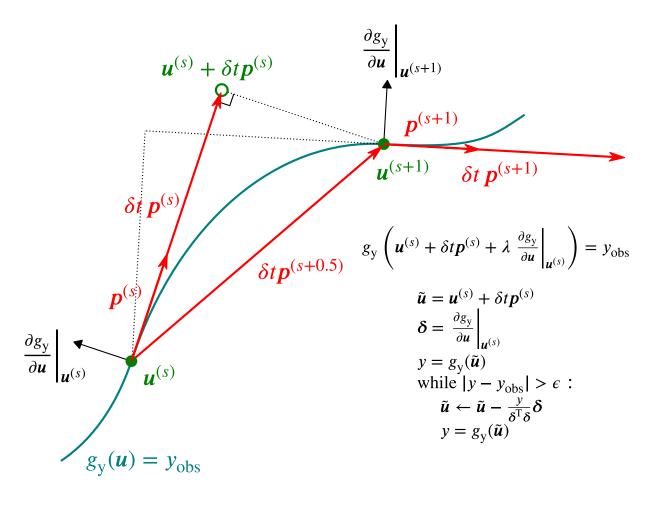
over an implicitly defined manifold $\mathcal{M}_{\mathbf{v}_{obs}} = \{ u \in \mathcal{U} : g_{\mathbf{v}}(u) = \mathbf{y}_{obs} \}$ embedded in \mathcal{U} .

Constrained Hamiltonian Monte Carlo (CHMC)

Use simulated constrained Hamiltonian dynamic to propose moves on $\mathcal{M}_{\mathbf{v}_{obs}}$:



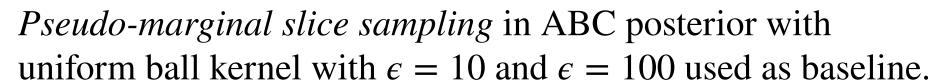


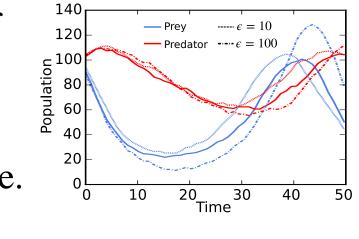


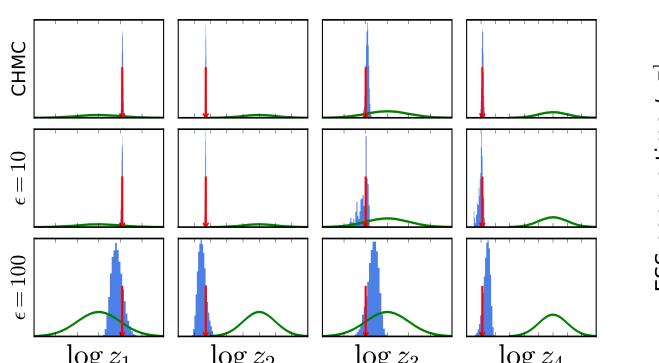
Experiments

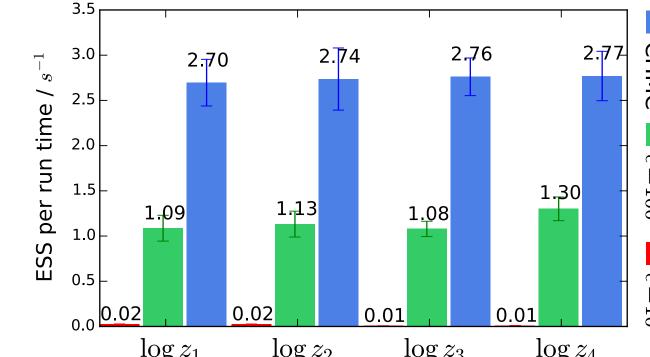
Lotka-Volterra parameter inference

Infer posterior on 4 system parameters given observations of predator and prey populations at 50 simulated time-steps.

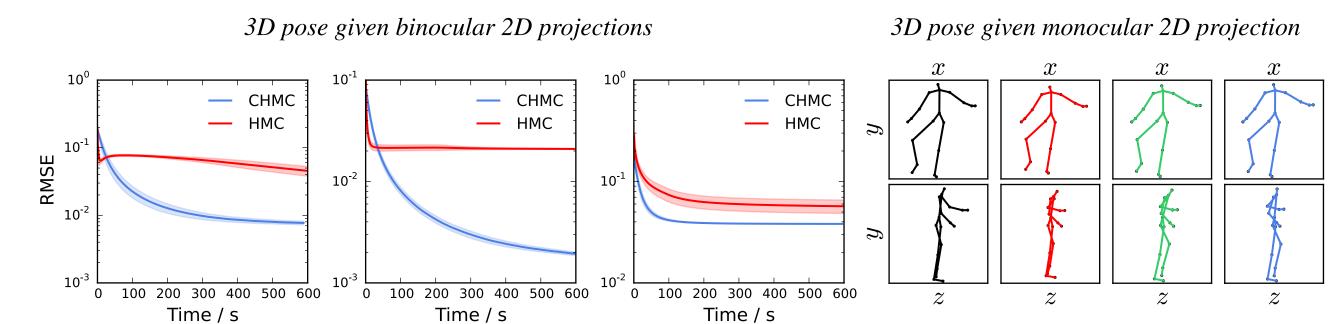






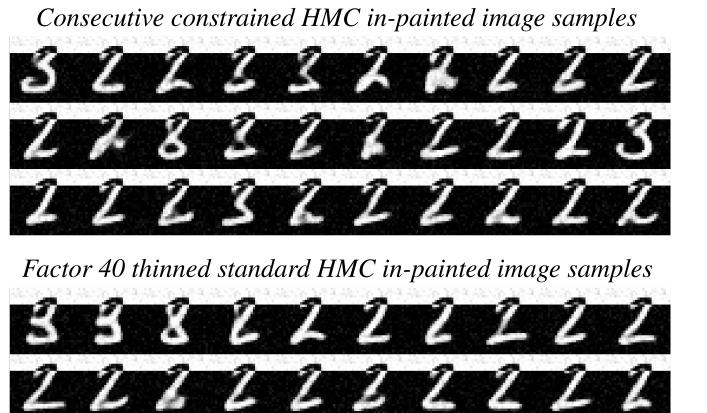


Human pose inference

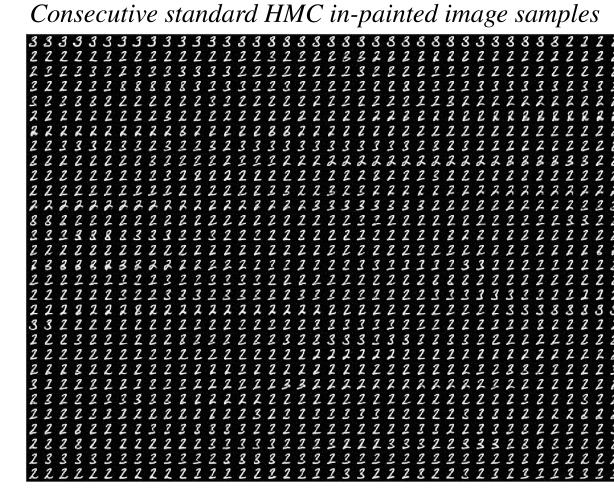


MNIST digit image in-painting

In-painting bottom 75% of digit images given observed top 25%. 60 s total sampling time.



32333222



Conclusions

Generally applicable inference method for differentiable generative models.

Asymptotically exact alternative to ABC where applicable: $\epsilon = 0$ / no summary statistics.

Key idea: consider conditioning as constraint on inputs to generator function.

Constrained HMC allow efficient gradient-based exploration of target density on constraint manifold corresponding to input consistent with observations.

References

- 1. H. C. Andersen. RATTLE: A 'velocity' version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics., 1983.
- 2. M. A. Brubaker, M. Salzmann, and R. Urtasun. A family of MCMC methods on implicitly defined manifolds. AISTATS, 2012.
- 3. P. Diaconis, S. Holmes and M. Shahshahani. Sampling from a Manifold. Advances in Modern Statistical Theory and Applications, 2013.
- 4. I. Murray and M. M. Graham. Pseudo-marginal slice sampling. AISTATS, 2016.
- 5. D. P. Kingma and M. Welling. Auto-encoding variational Bayes. ICLR, 2014.