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SLICE SAMPLING

Pseudo-Marginal (PM) MCMC, as analysed in
Andrieu and Roberts (2009):

Inputs:
of unnormalized target probability f, proposal dist.

r(0’; 0), unbiased estimator : E <(f: ) {f} f(0)V 0,

current parameters @, previous estimate

Output: new state-estimate pair (6, f).

1. Propose new state and estimate its probability:
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Comnsider u as auxiliary variables as in Chopin and
Singh (2015). This gives a new state (6, u) with
joint target density

(0, u) = f (6; u)q

(w)/C
/ (8, u) du = / 7 (6; w)q (u)/Cdu=f(6)/C

Standard PM MCMC: Metropolis—Hastings update
on the joint target with proposal

With u now clamped during the 8 updates, usual
case of a conditional distribution proportional to a
deterministic function.

Slice sampling will move 0 if f (6; w) is continuous
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Parameter inference in (Gaussian process classifier

Clearer step-size selection Parameter inference in Ising model

e Two UCI datasets, Pima and Breast, modelled following
Filippone and Girolami, (2014).

e Eistimator for marginal likelihood - importance sampler
with using Gaussian latent posterior approximation as
importance distribution.

e Adaptive tuning of step size significantly more consistent
with APM approaches.

e Cost-normalised effective sample size when using APM
updates significantly better than standard PM approach.

Doubly-intractable distribution - 30 x 10 lattice.

Data generated using exact sampler.

Using standard PM approach chains stick for long periods.
Using APM framework with slice sampling updates for u
and 6 eliminates sticking and gives much improved
cost-scaled autocorrelations.

With lower-variance estimator using annealed importance
sampling, standard PM performs better than APM.

e Optimal efficiency at step size giving acceptance rate
0.234 for standard Metropolis proposals in high
dimensions (Roberts et al. 1997).

e Not applicable to PM approach - in Gaussian test case
0.234 acceptance not even achievable.

e Using APM with independent proposals for w update
and Gaussian proposals for 8 update, optimal o
acceptance rate now close to 0.234.
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