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ABSTRACT

Markov chain Monte Carlo (MCMC) methods are a widely applicable
class of algorithms for estimating integrals in statistical inference prob-
lems. A common approach in MCMC methods is to introduce additional
auxiliary variables into the Markov chain state and perform transitions
in the joint space of target and auxiliary variables. In this thesis we con-
sider novel methods for using auxiliary variables within MCMC methods
to allow approximate inference in otherwise intractable models and to
improve sampling performance in models exhibiting challenging prop-

erties such as multimodality.

We first consider the pseudo-marginal framework. This extends the
Metropolis—Hastings algorithm to cases where we only have access to
an unbiased estimator of the density of target distribution. The result-
ing chains can sometimes show ‘sticking’ behaviour where long series
of proposed updates are rejected. Further the algorithms can be difficult
to tune and it is not immediately clear how to generalise the approach
to alternative transition operators. We show that if the auxiliary vari-
ables used in the density estimator are included in the chain state it is
possible to use new transition operators such as those based on slice-
sampling algorithms within a pseudo-marginal setting. This auxiliary
pseudo-marginal approach leads to easier to tune methods and is often

able to improve sampling efficiency over existing approaches.

As a second contribution we consider inference in probabilistic models
defined via a generative process with the probability density of the out-
puts of this process only implicitly defined. The approximate Bayesian
computation (ABC) framework allows inference in such models when
conditioning on the values of observed model variables by making the
approximation that generated observed variables are ‘close’ rather than
exactly equal to observed data. Although making the inference problem
more tractable, the approximation error introduced in ABC methods can
be difficult to quantify and standard algorithms tend to perform poorly
when conditioning on high dimensional observations. This often re-
quires further approximation by reducing the observations to lower

dimensional summary statistics.

We show how including all of the random variables used in generat-

ing model outputs as auxiliary variables in a Markov chain state can



allow the use of more efficient and robust MCMC methods such as slice
sampling and Hamiltonian Monte Carlo (HMC) within an ABC frame-
work. In some cases this can allow inference when conditioning on
the full set of observed values when standard ABC methods require re-
duction to lower dimensional summaries for tractability. Further we
introduce a novel constrained HMC method for performing inference
in a restricted class of differentiable generative models which allows
conditioning the generated observed variables to be arbitrarily close to

observed data while maintaining computational tractability.

As a final topic we consider the use of an auxiliary temperature variable
in MCMC methods to improve exploration of multimodal target densit-
ies and allow estimation of normalising constants. Existing approaches
such as simulated tempering and annealed importance sampling use
temperature variables which take on only a discrete set of values. The
performance of these methods can be sensitive to the number and spa-
cing of the temperature values used, and the discrete nature of the tem-
perature variable prevents the use of gradient-based methods such as
HMC to update the temperature alongside the target variables. We in-
troduce new MCMC methods which instead use a continuous temperat-
ure variable. This both removes the need to tune the choice of discrete
temperature values and allows the temperature variable to be updated

jointly with the target variables within a HMC method.



LAY SUMMARY

Much of the information we receive about the world is uncertain. By
implication the conclusions we draw from this noisy and incomplete
information are also subject to uncertainty. Probability theory offers
a consistent framework for describing the uncertainty in our beliefs
about the world in the form of a probabilistic model and in making in-
ferences about the variables in that model. Although the basic rules of
probability which underlie the inference process are easy to state, for
problems of even moderate complexity the calculations involved in per-
forming inference are typically intractable to compute exactly as they
involve an exhaustive iteration over a combinatorially large or even in-

finite number of possible configurations of the model variables.

This thesis is concerned with the development of efficient methods for
approximate inference in complex probabilistic models. Such methods
trade-off a loss of exactness for an increase in computational tractab-
ility. In particular we focus here on the topic of Markov chain Monte
Carlo methods, which are a class of approaches for approximating the
computations involved in inference. A noisy dynamic is constructed
which explores the probability distribution on configurations of the
model variables which are plausible given our observed information.
The model variable values sampled by this dynamic can then be used
to represent our beliefs about the model variables given the observed
information and to efficiently approximate the calculations involved in

inference by computing averages over the sampled values.

This thesis specifically considers methods which augment the space of
model variables being explored by the dynamic with additional auxili-
ary variables. In some cases this allows the robustness or efficiency of
the resulting sampling methods to be improved, for example by mak-
ing it easier for the sampler to move between separated regions of high
probability in the model variable space. In other settings redefining the
state space of the problem can allow us to perform inference in set-
tings where we do not have an explicit form for the distribution on the
variables of interest, for example in simulator models where we can
generate plausible values for the model variables but not necessarily

express the probability distribution on those variables.
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INTRODUCTION

Inference is the process of drawing conclusions from evidence. While
deductive logic offers a framework for inferring conclusions from abso-
lute statements of truth, it does not apply to the more typical real-world
setting where the information we receive is uncertain. To make infer-
ences under conditions of uncertainty, we must instead turn to probab-
ility theory, which both offers a consistent framework for quantifying

our beliefs and making inferences given these beliefs.

The key computational task in inference is computing integrals with re-
spect to probability distributions on the variables in a proposed model.
Typically these integrals will not have analytic solutions and the large
number of variables being integrated over mean numerical quadrature
methods are impractically costly. In these cases we must resort to ap-
proximate methods which trade-off an introduction of error for an in-
crease in computational tractability. Markov chain Monte Carlo (MCMC)
methods are a very generally applicable class of approximate inference
techniques which estimate the integrals of interest by computing aver-

ages over the states of a Markov chain.

The topic of this thesis is the development of MCMC methods. In par-
ticular we introduce several novel methods which exploit reparamet-
erisations and augmentations of the state of a Markov chain to improve
upon the computational efficiency, ease of use or degree of approxima-

tion error of existing approaches.

In this chapter we discuss the basic concepts of probabilistic modelling
which underpin the inference methods discussed in later chapters. In
particular we review the terminology and basic concepts of the measure-
theoretic description of probability as some of the later results in the
thesis are most clearly described within this framework. We also in-
troduce graphical models as a compact way of visualising structure in
probabilistic models. Finally we conclude with a discussion of the spe-
cific inference problems that the methods presented in the rest of this

thesis are intended to help tackle.
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The actual science of
logic is conversant at
present only with
things either certain,
impossible, or entirely
doubtful, none of
which (fortunately)
we have to reason on.
Therefore the true
logic for this world is
the calculus of
probabilities

—James Clerk
Maxwell



A o-algebra, &, on a
set S is set of subsets
of SwithS e &,

0 € & and which is
closed under
complement and
countable unions and
intersections.

Kolmogorov’s axioms:

. Non-negativity:
P(E) > 0VE € &,

. Normalisation:

P(S) =1,

. Countable additivity:
for any countable set
of disjoint events
{Ei}; 1 Ei € ¥ Vi,
EiﬂEj =0Vi+j,
P(UiEi) = X; P(Ei).

If(X, F) and (Y, G)
are two measurable
spaces, a function
f:X—>Yis
measurable if

fUE) e F VE€ G.

The Borel o-algebra
HAB(R) is the smallest
o-algebra on R
which contains all
open real intervals.
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| INTRODUCTION

1.1 PROBABILITY THEORY

A probability space is defined as a triplet (S, &, P) where
e Sis the sample space, the set of all possible outcomes,

o & is the event space, a o-algebra on S, defining all possible events

(measurable subsets of S),

o P is the probability measure, a finite measure satisfying P(S) = 1,

which specifies the probabilities of events in &.

Given this definition of a probability space, Kolmogorov’s axioms [142]
can be used to derive a measure-theoretic formulation of probability
theory. The probability of an event E € & is defined as its measure P(E).
Two events A, B € & are independent if P(AN B) = P(A)P(B).

The key advantage of the measure-theoretic approach to probability is
that it provides a consistent definition of the probability of an event in
any space we can define a measure on. This allows a unified treatment
of the common cases of probability distributions of discrete and con-
tinuous random variables but also makes it possible to consider distri-
butions on more general spaces. In Chapter 4 we will consider problems
which involve distributions on implicitly-defined manifolds where this

generality will be key to understanding the proposed methods.

1.1.1  Random variables

When modelling real-world processes, rather than considering events
as subsets of an abstract sample space, it is usually more helpful to
consider random variables which represent quantities in the model of
interest. A random variable x : S — X is defined as a measurable

function from the sample space to a measurable space (X, ).

Often X is the reals, R, and ¥ is the Borel o-algebra on the reals, Z(IR),
in which case we refer to a real random variable. It is also common to
consider cases where X is a real vector space, R, and ¥ = Z(RP) - in
this case refer to a real random vector and use the notationx : S —» X. A
final specific case is when X is countable and ¥ is the power set & (X)
in which case we refer to x as a discrete random variable. As we are most
often concerned with real-valued random variables and vectors in this
thesis, when it is unambiguous to do so we drop the ‘real’ qualifier and

simply refer to random variables and random vectors.



1.1 PROBABILITY THEORY |

Due to the definition of a random variable as a measurable function,

we can define a pushforward measure on a random variable x

Py(A) =Pox1(A) =P({seS:x(s) €A}) VAeF. (11

The measure Py specifies that the probability of the event that the ran-
dom variable x takes a value in a measurable set A € ¥ is P,(A). We

typically describe Py as the distribution of x.

112 Joint and conditional probability

Typically we will jointly define multiple random variables on the same
S - X,

y : § = Y be two random variables with corresponding o-algebras ¥

probability space. Let (S, &, P) be a probability space and x :

and G. Then the joint probability of x and y is defined as

Puy(A, B) =P(x(A) Ny (B)) VAeF,Beg. (1.2)
The joint probability is related to P, and P, by
Pyy(A, Y) = P,(A), P,y(X, B)=Py(B) YAe¥F,Beg. (1.3)

In this context P, and Py are referred to as marginal distributions of the
joint distribution. Two random variables x and y are said to be inde-

pendent if and only if

P,y(A,B) = Px(A)P,(B) VA€ F,Beg. (1.4)

A particularly key concept for inference is the definition of conditional
probability. The conditional probability of an event A € & occurring
given another event B € & has occurred is denoted P(A | B) and we

have the definition

P(AN B)

P(AIB) = =5

VAe E, Be & P(B) #0. (1.5)
Correspondingly we denote the conditional probability of the event of
the random variable x taking a value in A € ¥ given the event that the
random variable y takes a value in B € G as Py}, (A | B). Using (1.5) and

(1.2), Px}y and Py, can be shown to satisfy

Px,y(A’ B) = ley(A | B) Py(B) = Pylx(B | A) PX(A)
VAeF,BegG.

(1.6)
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IF(X, F) and (Y, G)
are two measurable
spaces, | a measure
on these spaces and
f:X—>Ya
measurable function,
the pushforward
measure jiy satisfies
pr(A) = o f71(4)
VAegG.

In Kolmogorov’s
probability theory,
(1.5) is given as an
additional definition
distinct from the
basic axioms. In
alternatives such as
the work of Cox [65,
66] and de Finetti
[88], conditional
probabilities are
instead viewed as a
primitive.



A measure on X is

o-finite if X is a
countable union of
finite measure sets.

If p andv are
measures on a
measurable space
(X, F) then v has
absolute continuity
WRTtop if VA€ F,

(A) = 0 = v(A) = 0.

18

| INTRODUCTION

This decomposition of a joint probability into a product of a conditional
and marginal is sometimes referred to as the product rule. An implica-

tion of (1.6) is what is often termed Bayes’ theorem

Pylx(B | A) PX(A)

ley(AlB) = Py(B)

VA€ F,BeG:Py(B)#0, (17)

which will be of key importance in the later discussion of inference.

The definition in (1.2) of the joint probability of a pair of random vari-
ables can be extended to arbitrarily large collections of random vari-
ables. Similarly conditional probabilities can be defined for collections
of multiple jointly dependent random variables, with the product rule
given in (1.6) generalising to a combinatorial number of possible factor-
isations of the joint probability. Graphical models offer a convenient
way of representing the dependencies between large collections of ran-
dom variables and any resulting factorisation structure in their joint

probability, and are discussed in Section 1.2.

113 Probability densities

So far we have not specified how the probability measure P is defined
and by consequence the probability (distribution) of a random variable.
The Radon-Nikodym theorem guarantees that for a pair of c—finite
measures p and v on a measurable space (X, ) where v is absolutely
continuous with respect to p, then there is a unique (up to p-null sets)

measurable function f : X — [0, c0) termed a density such that

wm:Af@:Aﬂmmm VAeF. (1.8)

The two Lebesgue integral notations above are equivalent and we will
use them interchangeably. The density function f is also termed the
Radon-Nikodym derivative of v with respect to p, denoted g—;. Density
functions therefore represent a convenient way to define a probability
distribution with respect to a reference measure we will term the base
measure. The key requirement defining what is an appropriate base
measure to use is that the probability measure of interest is absolutely

continuous with respect to it.

It can also be shown that if f = g—; and g is a measurable function

/ 9(x) v(dx) = / 9(x) f(x) p(d), (19)
X X



1.1 PROBABILITY THEORY |

which we will use later when discussing calculation of expectations.

Real random variables will typically have a distribution Py defined by
a probability density py : R — [0, oo) with respect to the Lebesgue

measure, A, on R,
P (A) = / px(x) A(dx) = / px(x) dx VA € B(R). (1.10)
A A

Analogously for a random vector x with density px : RP — [0, o)

with respect to the D-dimensional Lebesgue measure A” we have that

Px(A) = /A px(x) A2 (dx) = /A p(x)dx  VAe ZMRP). (L11)

The notation in the second equalities in (1.10) and (1.11) uses a conven-
tion that will be used throughout this thesis that integrals without an

explicit measure are with respect to the Lebesgue measure.

The probability distribution of a discrete random variable can be defined
via probability density px : X — [0, 1] with respect to the counting

measure #,

mm=A

The co-domain of a probability density py for a discrete random variable

px (%) #(dx) = Z px(x) YA€ 2(X). (1.12)

x€eA

is restricted to [0, 1] due to the non-negativity and normalisation re-
quirements for the probability measure P, with ), cx px(x) = 1. Com-
monly for the case of a discrete random variable, the density py is in-
stead referred to as a probability mass function, with density reserved
for real random variables. We will however use probability density in
both cases in keeping with the earlier definition of a density, this avoid-
ing difficulties with terminology and notation when defining joint prob-

abilities on a mixture of real and discrete random variables.

The joint probability Py, of a pair of random variables x and y with co-
domains the measurable spaces (X, ¥) and (Y, G) respectively, can
be defined via a joint probability density py, : X X Y — [0, co) with

respect to a product measure i, = py X 1y by

MMﬂ:/pmmwMM@> (L.13)
AXB
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The Lebesgue
measure assigns a
measure to subsets of
a Euclidean space,
and for R, R? and
R? formalises the
intuitive concepts of
length, area and
volume of subsets
respectively.

The counting measure
# is defined as

#(A) = |A| for all
finite A and

#(A) = +00
otherwise.

If (X1, 1, ju) and
(X2, F2, pg) are two
measure spaces, the
product measure
X g ona
measurable space
(X1 XX, F1® F2) is
defined as satisfying
(p1 X pi2) (A1 X Ag) =
w1 (A1) p2 (Az)

VA; € 7‘-1, Ay € 7‘—2
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As a consequence of Fubini’s theorem, the integral with respect to y,

can be expressed as iterated integrals with respect to y, and py

Pay(A.B) = / / sy (5, ) () 1y (dy)
AJB (1.14)

- /B /A bay (6 9) 1y (dy) px(dx) VA€ F, B G.

The two measures i, and pi, can differ for example y, = A and py, = #if

x is a real random variable and y is a discrete random variable.

When dealing with random variables, we will often only specify the co-
domain of the random variable(s) and a (joint) probability density, with
the base measure being implicitly defined as the Lebesgue measure for
real random variables (or vectors), counting measure for discrete ran-
dom variables and an appropriate product measure for a mix of random
variables. Similarly we will usually neglect to explicitly define the prob-
ability space (S, &, P) which the random variable(s) map from. In this
case we will typically use the loose notation x € X to mean a random

variable x with co-domain X.

Tables A.1, A.2 and A.3 in Appendix A give definitions of the densit-
ies and shorthand notation for some common parametric probability

distributions that we use in this thesis.

114 Transforms of random variables

A key concept we make use of in this thesis is defining transformations
of random variables. Let x be a random variable with co-domain the
measurable space (X, ). Further let (Y, G) be a second measurable
space and ¢ : X — Y a measurable function between the two spaces. If
we define y = ¢ o x then analogously to our original definition of Py as
the pushforward measure of P under the measurable function defining

x, we can define Py in terms of P, as
Py(A) =Pyo¢ ' (A) =P({x € X: ¢(x) € A}) VAegG, (115

i.e. the probability of the event y € A is equal to the probability of x
taking a value in the pre-image under ¢ of A. To calculate probabilities
of transformed random variables therefore we will therefore need to be

able to find the pre-images of sets under the transformation.
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If the distribution Py is defined by a density pyx with respect to a measure
Jix, we can also in some cases find a density p, on the transformed vari-

able y = ¢(x) with respect to a (potentially different) measure y,

mw:/ m@m@ﬁ/m@m@)mfg (116)
$1(A) A

For random variables with countable co-domains where the integral in
(1.16) corresponds to a sum, a py satisfying (1.16) is simple to identify. If x
is a discrete random variable with probability density py with respect to
the counting measure, then y = ¢(x) will necessarily also be a discrete

random variable. Applying (1.16) for py = C};X we have that

[ p0s@= 3 p@=3 3 e

() xeg(A) yeA xeg(y)

_ / o)kl vAeg. 1)

A xedi(y)

dp

We can therefore define p, = —* in terms of py as

)= D px) Vyev. (118)
x€¢N(y)

In the special case that ¢ is bijective with an inverse ¢! we have that

py(y) =pxod(y) VyeY. (1.19)

For transformations of real random variables and vectors, the situation
is more complicated as we need to account for any local contraction
or expansion of space by the transformation. We will consider here
the special case where the transformation is a diffeomorphism: a differ-
entiable bijection which has an inverse which is also differentiable. In
Chapter 4 we will consider how this can be generalised to non-bijective
differentiable functions, including the case where the dimensionalities

of the domain and co-domain of the function differ.

We use ¢~'(y) as a shorthand here for ¢! ({y}) i.e. the pre-image of a singleton set {y}
under ¢ or equivalently the fibre of an element y under ¢. In cases where an inverse
function exists we will also use the same notation, which of the three meanings is
intended should be clear from the context.
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Let X C RV and Y € RN and ¢ : X — Y be a diffeomorphism. Then
the Jacobian of ¢ is defined as

opr . O
0x1 OxN
¢
= _r _ : 1.20
Jolx) =52 = | . (120)
opn . O9N
0x1 OxN

The Jacobian matrix describes the local transformation of an infinites-
imal volume element dx in X under the map ¢. In particular the cor-
responding volume element in Y under the map will be an infinites-
imal parallelotope spanned by the columns of the Jacobian J4(x). The
Jacobian matrix determinant |J¢(x)| which corresponds to the volume
of this parallelotope therefore determines hows the volume elements
scales under the map - a value more than one corresponds to a local
expansion and less than one to a contraction. Informally we therefore
have that dy = |J¢(x)| dx and applying the same arguments to the
inverse map ¢, dx = ‘del(y)‘ dy.

Let x be a random vector taking values in the measurable space (X, #(X))
and define y = ¢ o x as a random vector taking values in (Y, #(Y)). If

Px has a density px with respect to the Lebesgue measure

) = Peos = [

= [ beod @)1, ).

px(x) dx
) (1.21)

Therefore Py has a density py with respect to the Lebesgue measure

Py(y) = px0 ¢ (®) [Jy(y)| VyeY. (1.22)

In both the cases considered, we have seen that if the function ¢ the ran-
dom variable x is mapped through is bijective, it is tractable to compute
a density on the mapped random variable y as the pre-image ¢~ (y) of
a point y € Y is itself a point. Bijectivity is a very limiting condition
however, with many models involving non-bijective transformations of
random variables. In Chapter 4 we will discuss methods for performing
inference in generative models defined by complex, non-dimension pre-

serving and non-bijective transformations of random variables.
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115 Expectations

A key operation when working with probabilistic models is computing
expectations. Let (S, &, P) be a probability space, and x : S = X a ran-

dom variable on this space. The expected value of x is defined as

E[x] = /Sde. (1.23)

Usually it will be more convenient to express expectations in terms of

the probability Py. If g : X — R is an integrable function then

/ g(x) Py(dx) = /g o x(s) P(ds). (1.24)
X s

If we take g as the identity map we therefore have that
E[x] = / x Py (dx). (1.25)
X

If Py is given by a density py = ‘fi—':f then using (1.9) we also have

E[x] = /X X () p(dx). (1.26)

A further useful implication of (1.24) is what is sometimes termed the
Law of the unconscious statistician. Let x : S — X be a random variable,

¢ : X — Y a measurable function and define y = ¢ o x. Then

Ely] = /5 y(s) P(ds) = /S $ o x(s) P(ds) = /x b(x) Px(dx),  (127)

i.e. the expectation of y can be calculated by integrating ¢ with respect
to Py. This means we can calculate the expected value of a transformed
random variable y = ¢(x) without using the change of variables formu-
lae from Section 1.1.4 to explicitly calculate the density p, and with a

relatively weak condition of measurability on ¢.

Closely related to the expected value are the variance and covariance of

arandom variable. The variance of a random variable x is defined
VIx] = E[(x- E[x))?] = E[*] - E[x]". (1.28)
For a pair of random variables x and y their covariance is defined

Clx,y] = E[(x - E[x])(y = E[y])]. (1.29)
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1.1.6 Conditional expectations and densities

A related concept, and one which will be key to the discussion of in-
ference, is conditional expectation. Let (S, &, P) be a probability space,
(X, F)and (Y, G) two measurable spacesandx : S » Xandy:S— Y
two random variables. Then the conditional expectation of x given vy, is

defined as a measurable function E[x|y] : Y — X satisfying
/ ( )x(s) P(ds) = /[E[x lyl(y) Py(dy) VBegG. (1.30)
y~\(B B

E[x|y] is guaranteed to be uniquely defined almost everywhere in Y
by (1.30), i.e. up to Py-null sets. As a particular case where B = Y we

recover what is sometimes termed the Law of total expectation

/stP: /S[E[x|y]oydP = E[x] = E[E[x]|y]oy]. (1.31)

We will also use a more standard notation for the conditional expect-
ation evaluated at point E[x |y = y] = E[x|y](y) but use the latter in

this section to stress its definition as a measurable function.

Conditional expectation can be used to define the regular conditional
distribution of a random variable conditioned on another random vari-

able taking a particular value
Pay(Aly) =E[Taox|yl(y) VyeY, AeF. (1.32)

We have reused our notation for conditional probability of random vari-
ables from Section 1.1.2 here, however it should be clear from whether
the value conditioned on is a point or a set which is being referred to.
A regular conditional distribution Py}, (- | y) defines a valid probability

measure on (X, ) for Py-almost all y and using (1.30) we have

Py(A B) = /B Pay(Aly)Py(dy) VAeF,BeG.  (133)

We can use this relationship to also motivate a definition of conditional

dPyy
d(pxXpiy)

marginal density p, = 3_2' ThenforallAe F,Be G

exists and has

density. We require that a joint density p, =

/ Pay(Aly) P, (dy) = / / by (1) () iy (dy)  (134)
B BJA
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If we define the conditional density py|, as

Pry (x:y) VxeX,yeY:p,(y) >0
pay(xly) =1 @ YRR (135)

0 VxeX,yeY:py(y) =0

then substituting this definition in to (1.34) we have

/B Pay(Aly) P, (dy) = /B /A by (¢ 19) (@) Py (dy).  (136)

Therefore p,|y is the density of the regular conditional distribution Py, .
We also have that if p,, and p, can be defined that

[E[XIY](y)=/Xxpx|y(x|y)ux(dx) Yye Y:py(y) >0 (137)

Note that the initial definition of conditional expectation in (1.30) was

not dependent on a joint density py, being defined.

1.2 GRAPHICAL MODELS

When working with probabilistic models involving large numbers of
random variables, it will often be the case that not all the variables
are jointly dependent on each other but that instead there are more
local relationships between them. Graphical models, which use graphs
to describe the dependencies between random variables, are a useful

framework for visualising the structure of complex models.

Several graphical formalisms for representing dependency structure in
probabilistic models have been proposed, with directed graphical mod-
els [206] (also known as Bayesian networks) and undirected graphical
models [138] (also known as Markov random fields) both common in
practice and each offering a more natural representation for certain
model classes. In this thesis we will instead use factor graphs [90, 91]
which combine the representational abilities of both directed and un-
directed graphical models while also offering a richer framework for

representing fine-grained information about model structure.

Factor graphs are bipartite graphs consisting of two node types: vari-
able nodes, displayed as labelled circles and representing individual (po-
tentially non-scalar) random variables in a probabilistic model, and

factor nodes, displayed as filled squares and representing individual

25
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(a) Example directed factor graph. (b) Example undirected factor graph.

Figure 1.1.: Examples of simple directed and undirected factor graphs. Square
black nodes correspond to individual factors depending on the con-
nected variables represented by circular nodes in the joint density.

factors in the joint density across the random variables in the model.
Edges between nodes in a factor graph are always between nodes of dis-
parate types i.e. between factor and variable nodes, but never between

factor and factor or variable and variable nodes.

Factors may be either directed or undirected. Undirected factors, de-
noted by factor nodes in which all edges connecting to variable nodes
are undirected, correspond to a factor in the joint density which de-
pends on all of the variables with nodes connected to the factor, but
without any requirement that the factor corresponds to a conditional

or marginal probability density.

Directed factors, factor nodes in which at least one edge from the factor
node to a variable node is directed, correspond to a conditional dens-
ity on the variables pointed to by directed edges given the values of
the variables connected to the the factor node by undirected edges. If
there are no undirected edges then the factor instead corresponds to
a marginal density. Graphs with directed factors must not contain any
directed cycles, i.e. connected loops of edges in which one of every pair
of edges connected to a factor on the loop is directed and all of the dir-

ected edges point in the same sense around the loop.

Figure 1.1a shows a simple example of fully directed factor graph for
three random variables. The graph implies that the joint density for

the model can be factorised as

Px1,x2,x3 (xl’ X2, .X'3) = Pxz|x1,xz (X3 | X1, x2) Px (xl) Px, (.X'z). (138)
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Figure 1.2.: Hierarchical linear regression model factor graph showing ex-
amples of extended factor graph notation.

Figure 1.1b shows a fully undirected factor graph on three random vari-
ables. If {/; ; denotes the unnormalised density factor on the pair (x;, x;)

then the graph implies the joint density can be factorised as

1
Pxyxa.x5 (X1, X2, X3) = E¢1,2(X1,x2)¢1,3(x1,x3)¢2,3(9€2,x3) (1.39)

with Z a normalising constant such that the density integrates to one.

Figure 1.2 shows examples of some additional useful factor graph nota-
tion we will use in this thesis. We use as an example a factor graph
corresponding to a hierarchical linear regression model which will be

discussed in Chapter 5.

It will often be useful to be able to explicitly represent deterministic
functions applied to the random variables in a factor graph. For this
purpose we introduce an additional node type denoted by an unfilled
diamond (). The semantics of this node type are similar to standard
directed factor nodes. Variables acting as inputs to the function are con-
nected to the node by undirected edges and the variable corresponding
to the function output indicated by a directed edge from the node to the
relevant variable. Like standard factor nodes, the deterministic factor
nodes only ever connect to variable nodes. The operations performed
by the function on the inputs will usually be included as a label adja-
cent to the node as illustrated by the example in Figure 1.2. A determin-

istic factor node can informally® be considered equivalent to a directed

A Dirac delta is not strictly a density as it is not the Radon-Nikodym derivative
of an absolutely continuous measure, however informally we treat is as the density
of a singular Dirac measure with respect to the Lebesgue measure f f(x)8(dx) =~

J fx)8(x) dx.
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factor node with a Dirac delta conditional density on the output vari-
able which concentrates all the probability mass at the output of the

function applied to the inputs variables.

The deterministic node notation allows generative models consisting
of complex compositions of deterministic functions and probabilistic
sampling operations to be represented in a unified framework. Sub-
graphs of a directed factor graph consisting entirely of deterministic
nodes can be viewed as computation graphs, a graphical formalism typ-
ically used in numerical computing frameworks to support efficient
automatic differentiation algorithms. We exploit this idea in later in the
thesis to allow propagation of derivatives through complex probabil-
istic models and make extensive use of automatic differentiation imple-
mentations in frameworks such as Theano [248] in numerical experi-
ments. In Appendix B we provide a short review of the basic concepts
of computation graphs and automatic differentiation and a discussion

of their links to directed factor graphs.

In some cases constant values used in a model will be included in a
factor graph as plain nodes indicated only by a label. The x¥ and ¢(¥

nodes in Figure 1.2 are an example of this notation.

A commonly used convention in factor graphs is plate notation [50],
with an example of a plate shown by the rounded rectangle bounding
some of the nodes in Figure 1.2. Plates are used to indicate a subgraph
in the model which is replicated multiple times (with the replications
being indexed over a set which is typically indicated in the lower right
corner of the plate as in Figure 1.2). The subgraph entirely contained
on the plate is assumed to be replicated the relevant number of times,
with any edges crossing into the plate from variable nodes outside of

the plate being repeated once for each subgraph replication.

Each of the factors in Figure 1.2 is labelled with a shorthand for a prob-
ability density function corresponding to the conditional or marginal
density factor associated with the node. Definitions for the shorthand
notations that are used for densities in this thesis are given in Appendix
A. The dependence of the factors on the value of the random variable

the density is defined on is omitted in the labels for brevity.

A final additional notation used in Figure 1.2 is the use of a shaded
variable node (corresponding to y()) to indicate a random variable cor-

responding to an observed quantity in the model.
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Figure 1.3.: Factor graph of N observations y™ independently and identically
distributed according to a distribution with parameters x.

1.3 INFERENCE

Having now introduced the tools and notation we use to define probab-
ilistic models, we will now describe the inference problems we consider
approximate approaches to solving in this thesis. We begin with a over-

view of Bayesian inference.

The starting point for any inference problem is to define a model spe-
cifying proposed relationships between the observed data and unknown
quantities to be inferred. The model codifies the assumptions we make
about the problem and any prior beliefs we have. In virtually all real
inference problems the model will be a simplified description of a much
more complex underlying process, usually motivated by prior empirical
observations that the behaviour proposed by the model is a reasonable
description of reality. For now we will consider the model as a singular
fixed object we will perform inference with. We consider probabilistic

model comparison in a subsequent subsection.

Amongst the simplest, but also most common, modelling assumptions
made is that the observed data values are independently and identically
distributed (IID) according to a parametric probability distribution. If
we denote the collection of N observed variables {y™ N then we as-

sume that each is independently generated from a distribution P

ym Ix
. . dPyx
Pyix Yn € {1... N} with density py;x = % and governed by a set of
Y
unknown parameters x € X.

Any beliefs we have about the plausible values for the parameters prior
to observing data are integrated into the model by choosing an appro-
priate, typically parametric, marginal distribution Py, with this distri-
bution, and the corresponding density px = g%, referred to as the prior.

The joint density on the model variables then factorises as

N
Py y G g™, x) = [ [y @™ 1) pu(x) (140
n=1
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Bayesian inference is
named after Thomas
Bayes, an 18th century
Presbyterian minister,
who proved a special
case of what is now
termed Bayes’ the-
orem. Pierre-Simon
Laplace later
independently derived
a more general
statement of Bayes’
theorem closer to the
modern form.

A conditional density
Pulv is from the
exponential family if
it can be written as
pu\v(u lv) =

h(u) exp(n(v)'t (u))
z(v) ’

with n(v) termed the
natural parameters
and t(u) termed the
sufficient statistics.
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with this structure illustrated as a directed factor graph in Figure 1.3. In
analogy to the naming of the prior, the conditional distribution on the
unknown model parameters after conditioning on observed data values
is termed the posterior and from the definition of conditional density

(1.35) we can express its density as

[T Py (™ 1x) px(x)
pyw, y (D, ...,y™)’

Pxjy®, ..y (X | yO, . y™) = (1.41)
This expression relating the posterior on the unknown parameters to
the prior distribution and model of the observations is an example of
Bayes’ theorem. Typically the product of the conditional densities pyx
is termed the likelihood and considered a function of the value x of the
unknown parameters x, with the observed data values {y™ Y fixed.
The denominator of the right-hand side (1.41), the marginal density on
the observed variables, can be written as a integral marginalising out

the parameters from the joint density

N
Py, .y (Y, o y®) = / [ [Pyix®@™ 1) px(x) pc(dx).  (1.42)
X =1

This term is often described as the marginal likelihood or the model evid-
ence. Generally this integral will not have an analytic solution though
there are exceptions to this in a few special cases. For example if the
densities py|x and py are both of exponential family distributions and
form a conjugate pair such that the posterior density is in the same fam-
ily as the prior density then (1.42) will have a closed-form solution. For
models in which the parameters are discrete the integral in (1.42) cor-
responds to a summation and so is in theory exactly solvable, though
if the total number of possible configurations of the parameters is very
large this summation can be infeasible to compute in practice. If the
parameters are instead real-valued but of a low-dimensionality it may
be possible to use numerical quadrature methods [70] to compute the
integral in (1.42) to a reasonable accuracy. Quadrature methods involve
evaluating the integrand across a grid of points and then computing a
weighted sum of these values. For a fixed grid resolution however the
cost of quadrature scales exponentially with the dimension of the space
being integrated over - if G points are used per dimension, for a D di-
mensional parameter space evaluating (1.42) would require summing

the joint density over G parameter values.
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For real-valued parameter spaces of a more than ~ 10 dimensions? eval-
uating the model evidence term (1.42) is therefore typically computa-
tionally intractable. We can therefore often only evalulate the posterior
density (1.41) up to an unknown constant. The posterior density itself
is usually not of direct interest as it is only a proxy for describing the
posterior distribution and is dependent on the particular model para-
meterisation chosen. However most quantities of interest from an in-
ference perspective involve integrating functions against the posterior
distribution and as with the model evidence these integrals will typic-

ally be intractable to compute exactly.

For example under an IID assumption the density of the predictive dis-
tribution of a new data point y* given the previously observed data is

formed by integrating py|x against the posterior distribution

py*ly(l),»..,yW) (y* I y(l), s y(N))

= [ P 1) Py g0 (137, y ™) ) (143
X

= [E[Py|x(y* 1%) [y =y, . y®) = y(N)]~

If we wish to for example minimise the expected prediction error under
some loss function this will involve integrating against this predictive
distribution and so as a sub-task integrating against the posterior distri-
bution on the model parameters. Similarly evaluating statistics of the
unknown parameters under the posterior such as their mean or cov-
ariance corresponds to computing conditional expectations. In general
any inferential output which takes in to account all of the informa-
tion available from the posterior distribution will involve integrating
against the posterior and so the computation of integrals is the key

computational task in inference.

As exact evaluation of the integrals of interest is usually intractable
we must instead resort to approximate inference methods which trade-
off an introduction of some level of approximation for an increase in

computational tractability.

The C-based implementation by Steven G. Johnson of an adaptive multi-dimensional
quadrature algorithm [25] available at https://github.com/stevengj/cubature re-
commends using the package for integrals of up to around D = 7. Running a provided
test cases for the integral of a Gaussian density across a D-dimensional space with a
target error tolerance of 10~> took around 2.5 seconds for D = 5, 50 seconds for D = 6
and 17 minutes for D = 7 on one core of a desktop CPU. Extrapolating the ~ 20-fold
increase in run time per dimension, for D = 10 the run-time would be around 100 days.
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Figure 1.4.: Factor graph of a simple hierarchical latent variable model with N
observed variables y(™ each associated with a local latent variable
2", with both observed and latent variables dependent on a set of
global latent variables (parameters) x.

The 11D assumption is widely made in inference problems and although
it will not be always be entirely valid in practice, it will often be a reas-
onable approximation. For real-valued parameter spaces X and densit-
ies py|x and py meeting certain regularity conditions, if an IID assump-
tion is valid then the posterior distribution will asymptotically tend to a
multivariate normal distribution as the number of data points N tends
to infinity [123]. For inference in models of large IID datasets where the
conditions for asymptotic normality are met, while the dimensionality
of the parameter space will often still require the use of approximate
inference methods, the close to normal geometry of the posterior dis-
tribution will typically mean even relatively simple approximate infer-

ence methods can achieve good results.

In this thesis we will primarily be concerned with methods for perform-
ing inference in models which do not fit into this mould. In the follow-
ing subsections we discuss some specific issues that can prove chal-
lenging to standard approximate inference approaches and which the

methods contributed in this thesis are intended to help address.

1.3.1  Hierarchical models

In the preceding discussion of inference in a model of a 1ID dataset, it
was assumed that the only unknown variables in the model were a set
of parameters x, the quantity of which did not depend on the number of
data points N. This structure can be overly restrictive with it common
that the process being modelled includes unknown quantities associ-
ated with each observed variable. Models will therefore often include
local (per data point) latent variables in addition to a set of global latent
variables (or parameters). This grouping structure in the observed and
unobserved variables in a model can extend to multiple levels and such

models often are termed hierarchical or multilevel models.
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A simple example of a hierarchical model is shown as a factor graph in
Figure 1.4. As in the factor graph in Figure 1.3 we assume there are N
observed variables {y ")}N
We further define N local latent variables {z(™ }N | paired with each ob-

served variable. In Figure 1.4 we assume each pair of local latent and ob-

, and a vector of global latent variables x.

served variables (z\™, y(™) are conditionally independent of the other
pairs {z\™,y(™}, ., given the global latent variables z. More complex
structures are also common - for example dynamical state space models
for time series data assume dependencies between the latent variables

corresponding to adjacent time points.

Although powerful, the introduction of local latent variables in to mod-
els can significantly increase the complexity of inference. At a basic
level, as the number of unobserved variables is now dependent on the
data set size, the total dimensionality of the space which needs to be in-
tegrated over when performing inference will typically be much higher
than for models with a fixed number of parameters. This means the
need for inference methods which scale well with dimensionality is
even more essential. The growth of the the number of unobserved vari-
ables with the data set size N will typically also mean that we can no
longer expect asymptotic normality of the full posterior. Often the pos-
terior distribution on the local and global latent variables will have a
complex geometry, with strong dependencies between the global and
local latent variables that can limit the performance of many standard

approximate inference approaches [36].

In some cases the posterior distributions of the local latent variables
associated with the observed data will not be of direct interest to the
downstream task. For example the conditional independence structure
in Figure 1.4 means that the predictive distribution on a new unseen

datapoint y* given the observed data has density

Py iy, y @y 1y, . y™)

//pylxz(y | x,2) pzlx(zlx) (1.44)

Puty®, .y (1YY, o g™ p(dx) g (d2).

Predictions under the model will therefore not depend on the values

of the local latent variables {z(”)}fl\’:l, and so ideally we would mar-

ginalise out these variables from the full posterior distribution on all
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(a) Pseudo-code for Milstein method integration of SDE model.

(b) Directed factor graph of 3 time steps of SDE simulation.

Figure 1.5.: Example of a simulator model corresponding to Milstein method
integration of a set of SDEs, dy(t) = m(y(t),x) dt + s(y(t), x) dn(z),
specified as pseudo-code in (a) and a directed factor graph in (b). The
dynamics of model are governed by parameters x. In the pseudo-
code the notation ~ followed by a distribution shorthand represents
generating a value from the associated distribution.

unobserved variables P, oy, .y to obtain the posterior dis-
y(N)- The distribu-

..y is defined on a much lower dimensional space and will

tribution on just the global latent variables Py o,

tion ley(D,
often have a simpler geometry which makes it more amenable to ap-
proximate inference methods, however generally the marginalisation
over the local latent variables will not be analytically tractable. We can
in some cases however approximately marginalise out the local latent

variables - we discuss methods based on this idea in Chapter 3.

1.3.2 Simulator models

The probabilistic models considered so far have been defined by expli-
citly specifying a density over the all the variables in the model, for
example via a factor graph. Rather than defining the density on the
variables in a model an alternative approach is for a process for gener-
ating values for the variables in a model to be specified procedurally
in code, with the resulting joint density on the model variables then
only implicitly defined. Such models are sometimes termed simulator

or implicit models [77].
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(a) Directed factor graph for model (b) Plot of marginal density on latent
with two latent variables (xg, x2), variables (contours) and set of val-
and an observed variable y. ues for which y = 1 (green curve).

Figure 1.6.: Simple example of an implicit probabilistic model where the ob-
served variable is a non-bijective function of two latent variables.

A common setting in which such models occur is the simulation of a
mechanistic model of a physical process for example described by a set
of stochastic differential equations (SDEs). In implementations of such
simulator models, the stochasticity in the model will be introduced via
draws from a pseudo-random number generator. Given these random
inputs, the output of the simulator is then calculated as a series of de-
terministic operations and so can be described by a computation graph.
The overall composition of directed factor nodes specifying the gener-
ation of random inputs from known densities by the random number
generator and computation graph describing the operations performed
by the simulator code together therefore define a directed factor graph.
An example of a simulator model corresponding to approximate integ-
ration of a set of SDEs using the Milstein method [175] is shown as both

pseudo-code and a directed factor graph in Figure 1.5.

The main complicating factor in performing inference in simulator mod-
els is the unavailability of an explicit density function on the model
variables which is a prerequisite for most approximate inference meth-
ods. Computing a density function on the unobserved variables to be
inferred (for example parameters of the dynamics of a SDE model) and
simulated observed variables that are conditioned on requires that all
other random variables used in the model are marginalised over. In
some cases this marginalisation may technically be possible to exactly
solve and so a density function possible to compute in theory but the
complexity of the model structure means that the density is unavailable

in practice.
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Figure 1.7.: Five unit Boltzmann machine factor graph.

In many cases however the density function may not be exactly evalu-
able even in theory. A key difference of simulator models from the prob-
abilistic models considered previously is that the observed variables in
the model are defined via deterministic transformations of other ran-
dom variables. Using our above intuition that any simulator model can
be expressed as a directed factor graph with deterministic factor nodes,
this means that the observed variables in the graph correspond to the
outputs of deterministic factors rather than the more usual case of the

observed variables being connected to probabilistic factors.

An illustration of such a case for a simple three variable model is shown
in Figure 1.6. Here the observed variable y is a deterministic function of
two latent (unobserved) variables x; and x,. There is no analytic solu-
tion in terms of elementary functions for x; as a function of y and x, or
for x, as a function of x; and y. This means the Dirac delta term corres-
ponding to the deterministic factor cannot be integrated out. Due to the
presence of the Dirac delta the joint density py, x, is not well defined
(the joint distribution Py ,, 4, is not absolutely continuous with respect
to the Lebesgue measure) which complicates evaluations of conditional
expectations such as E[f(x1,xz) | y = 1]. In particular the set of x; and
x2 values corresponding to solutions to y = y for an particular y (illus-
trated for y = 1as the green curve in Figure 1.6b) is an implicitly defined
manifold (here a one-dimensional curve) in the x;—x, space with zero
Lebesgue measure, and the conditional distribution Py ,, has support
only on this manifold. We explore methods for performing inference in

implicit models in Chapter 4.
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1.3.3 Undirected models

When introducing factor graphs we stated that factors can be both dir-
ected and undirected. In the preceding discussion we concentrated on
directed models, both in the form of models explicitly specified via dir-
ected factor graphs as in the examples in Figure 1.3 and 1.4, and sim-
ulator models which as we argued in the previous subsection can be
considered as implicitly defining a directed factor graph. A key defin-
ing feature of models corresponding to directed factor graphs is that
they are natural descriptions of generative processes, with independ-
ent sampling from the joint distribution across model variables typic-
ally simple to perform via ancestral sampling (in the case of simulator

models this being their defining feature).

Undirected models (which we will use here to mean models specified
by factor graphs consisting solely of undirected factors) offer a comple-
mentary approach for defining a probabilistic model. Each undirected
factor node is associated with a non-negative function defining a factor
in the joint density across all model variables. Unlike a directed factor,
this function does not correspond to a conditional or marginal density.
Instead it describes a more general notion of ‘compatibility’ between
the values of sets of variables in the model, defining a series of soft
constraints as to which joint configurations are plausible (correspond-
ing to a high value for the factor) or implausible (corresponding to a
low value). This makes undirected models a natural representation for
models of systems of mutually interacting components without a spe-
cific directivity in those interactions. For example they are commonly
used in models of images to represent dependencies between pixel val-
ues, to model networks of stochastically spiking neurons in the brain
and models of magnetic interactions in particle lattices. Unlike direc-
ted models, generating samples from the joint distribution on variables
in an undirected model is typically a non-trivial task, with no general

equivalent to ancestral sampling.

A particularly common form of undirected model is the Boltzmann ma-
chine [1] also known as a pairwise binary Markov random field [138] or
in statistical physics settings an Ising spin model [133]. A Boltzmann ma-
chine consists of a set of binary random variables s = [s; - - - sp|T; these
are typically chosen to take valuesin U = {0, 1P orS={-1,+1}P - we

will favour S = {-1, +1}”. The joint distribution across the variables
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is parameterised by a symmetric weight matrix W € RP*P and a bias
vector b € RP and defined as

1 1 1
ps(s) = 7 exp(asTWs + sTb), Z = Z exp(asTWs + sTb). (1.45)

seS

Evaluation of the normalising constant Z involves a summation over
2D states and so for large D quickly become intractable to compute
exactly. Evaluation of expectations with respect to the Boltzmann ma-
chine distribution also involves an exhaustive summation across S and

so will also be intractable for high D.

If s; and s, are an arbitrary partition of the variables in s then import-
antly the conditional distribution P s, will also be a Boltzmann ma-
chine distribution. However unless the dimensionality of s; is small
enough that exhaustive summation over its possible states is feasible,
then evaluating normalising constants of this conditional distribution
and expectations with respect to it will also be intractable. Therefore
inference in Boltzmann machines conditioned on observations of part
of the state can be considered as a special case of computing expect-
ations and the normalising constants of (non-conditioned) Boltzmann

machine distributions, with the same challenges applying to both.

Figure 1.7 shows the factor graph for a Boltzmann machine distribu-
tion on five binary random variables {s;};_,. Each of the weights W;;
defines an undirected factor between a pair of variables s;W;;s;. As the
variables take on signed binary values, this factor is equal to W;; when
the variables are equal and so take the same sign and equal to —Wj;
when the variables take differing values. If W;; is positive this factor
therefore favours states where s; and s; are in the same configuration,
while if W;; is negative states with s; and s; in opposing configurations

are preferred.

Boltzmann machine systems with a mixture of positive and negative
weights will often be frustrated with no one global configuration which
satisfies the preferences specified by each weight, and instead there
being multiple states which each locally satisfy a subset of the soft
constraints specified by the weights. This typically leads to a highly

multi-modal distribution on the states of the system, with collections
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of nearby* states of high-probability separated sets of states with very
low probability.

This multi-modality typically makes frustrated Boltzmann machines
very challenging distributions to perform approximate inference with.
In particular methods based on constructing Markov chains which ex-
plore the state of the system tend to converge very slowly as they will
typically remain confined to a particular high-probability region of the
state space for many iterations. In Chapter 5 we will consider methods
for constructing Markov chains with improved exploration of challen-
ging multi-modal target distributions, including methods for estimat-
ing expectations and normalising constants of frustrated Boltzmann

machine distributions.

1.3.4 Model comparison

So far we have discussed inferring the unobserved variables in a single
fixed model. An important second level of inference is comparing com-
peting models for the same observed data. This can be treated consist-

ently within the probabilistic framework we have discussed.

Given observed data, we would like to be able to make a judgement
as to which of two (or more) proposed models better describes the
data. To be useful this comparison must take into account the relative
complexity of the models; a model with more free variables will gener-
ally be able to fit observed data more closely, however Ockham’s Razor
(and corresponding empirical evidence of the loss of predictive power
of overly complex models) suggests we should prefer simpler models
where possible. By marginalising over the free, unobserved variables in
a model, probabilistic model comparison automatically embodies Ock-

ham’s Razor [161].

A concrete structure for model comparison is to assume that there are a
finite set of M models, indexed by an indicator variable m € {1... M}.
All models share the same observed variables® y, and there are a set
of per model vectors of unobserved variables {xm}},\n/f=1 which are as-
sumed to be independent (before conditioning on observations). More

complex structures could be assumed such as the models sharing a set

4 Nearby here being in terms of the Hamming distance between the binary states.

For notational simplicity here we assume all observed variables have been concatenated
in to one vector and similarly for the unobserved variables, with any internal model
factorisation structure such as discussed in the preceding sections omitted.

Ockham’s Razor is a
philosophical
principle, commonly
attributed to the 14th
century Franciscan
friar William of
Ockham, that states if
there exist multiple
explanations for
observations, all else
being equal we should
prefer the simplest.
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of common unobserved variables, however we only consider the case of
independent models here. The joint density on the observations, model

indicator and latent variables is then assumed to factorise as

py,m,xl, S 9.Y1 (y’ ms xl! cee xk[) =

M
Py mxm (Y | M, X 1) pem (m) l_[ Px., (Xn). (1.46)
n=1

The marginal density on the model indicator p., represents our prior
beliefs about the relative probabilities of the models before observing
data. Importantly the value of the model indicator variable m selects
the relevant per model conditional density on the observed variables
given latent variables py|mx,,; this represents the assumption that con-
ditioned on the model indicator assuming a particular model index m
the observed variables are conditionally independent of the latent vari-

ables of all other modelsy L {x,},+,m | m =m.

Given this computational set up, the task in model comparison is then
to compute the relative probabilities of each of the models given ob-

served data. These probabilities are given by

Pylm (Y | M) pm(m)
2L (pyim(@ [ 7) pm(m))

Pmly(mly) = , (1.47)

which can be seen as a direct analogue to Bayes’ theorem for the pos-
terior density on unobserved random variables for a single model. The
key quantities needed to evaluate the model posterior probabilities are
the marginal densities py|m(y | m) evaluated at the observed data. Com-
puting these values requires marginalising out the unobserved vari-

ables from the per model joint densities py x,,|m

byim(y | m) = /X byima, (4 | M X)px, () dx.  (148)

This value is equivalent to the denominator in Bayes’ theorem (1.42),

this explaining the naming of this term as the model evidence.

As described previously, evaluating the model evidence requires integ-
rating across the space of all unobserved variables. The key computa-
tional challenge in being able to perform probabilistic model compar-
ison with complex high dimensional models is therefore again being
able to efficiently to compute integrals in high dimensional spaces. Un-

like the integrals required for making predictions using a single model
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however, the model evidence integral cannot be naturally expressed
as an expectation of a function with respect to the posterior distribu-
tion. This can complicate approximate computation of model evidence
terms compared to other quantities involved in inference. In Chapter 5
we will consider extensions to a class of methods proposed for estimat-

ing model evidence terms.

A common criticism of the model comparison framework we have de-
scribed is that the model posterior probabilities pm|y can be highly sens-
itive to the choice of the prior distribution placed on the unobserved
per-model variables Py, [2, 136]. Within the context of Bayesian infer-
ence the prior distribution is often viewed as a distinct entity from the
observation model Py|m,,, With the prior understood as encoding our
beliefs about the unobserved variables x,,, before observing data. That
the model evidence terms and so model posterior can be sensitive to the
specific choices of prior distributions is therefore viewed as a disadvant-
age as the priors are viewed as being somewhat arbitrary or subjective.
This in turn means the model posterior probabilities are similarly sub-

jective and this subjectivity is viewed as inherently undesirable.

In our opinion this criticism is ill-founded. All inferences are inherently
subjective. Both the observation model and prior are based on assump-
tions about a problem [95] and it is their combination which defines an
overall generative model which we use to perform inference with. A
prior distribution can only be interpreted in the context of the obser-
vation model it is combined with [99] and is no more or less subjective
than that observation model. If it is reasonable for the model posterior
to be sensitive to the choice of the observation model, it therefore seems
equally reasonable (and can be argued to be desirable [258]) for it to
be sensitive to the choice of prior. If a practitioner is worried about a
deleterious effect of arbitrarily chosen priors on the quality of model
comparison results, this could be argued to be reflective of a need to
improve the choice of prior rather than indicating an issue in the infer-

ence framework.

A further criticism levelled at probabilistic model comparison (and prob-
abilistic modelling more generally) is the potential difficulties in inter-
preting inferences under a setting of model misspecification, i.e. when
the generative model (or models) used to perform inference does not
match the true data generating process. Bernardo and Smith proposed

the nomenclature of M-closed to refer to model comparison under a

M
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setting in which the list of models being compared includes the ‘true’
model describing the data generating process as a member, and M-open
for the case in which the ‘true’ model is not included [24, §6.1.2]°. The
model posterior probabilities py, |, can be interpreted in an M-closed set-
ting as degrees beliefs of which of the set of models is the true model,

however their intepretation in the M-open case is less clear.

As commented in the introduction to this section, virtually all models
are simplifications of much more complex processes, so in this sense
inference with misspecified models and model comparison in an M-
open setting is the norm. In [24], Bernardo and Smith suggest reposing
model comparison as a decision problem in maximising the expecta-
tion of a utility function, for example the accuracy of predictions about
future observations. Various alternatives have been proposed to the
model comparison framework described above based on this idea, for
example using cross-validation to estimate predictive accuracy of mod-
els on held-out data [63]. The use of nonparameteric models which are
sufficiently flexible able to arbitarily closely approximate the underly-
ing data generating process (given sufficient data) as a proxy reference

model has also been proposed [120, 155].

Although the issue of interpretation of inferences under model misspe-
cification is important from both a philosophical and practical perspect-
ive, in this thesis we concentrate solely on the computational aspects of
inference, and we will assume being able to (approximately) compute
model evidence integrals is at least in some cases desirable without
making any claims to the validity of the probabilistic model comparison
framework in a particular setting. Further though we have motivated
the computation of model evidence integrals within a setting of com-
paring multiple models, we will only directly consider computation of
model evidence terms for a single model, with the implicit assumption
that this could be repeated for all models of interest to allow (in conjuc-
tion with specification of prior probabilities on the models) estimation

of the model posterior probabilities.

A third alternative M-completed is also defined for the case where the true model is
known but not included in set of models being compared due to being computational
intractable or non-interpretable.



1.4 SUMMARY |

1.4 SUMMARY

Probabilistic modelling offers a natural way to formalise our beliefs
and assumptions about a problem and make inferences given those be-
liefs. Once a model has been defined the theoretical basis of the infer-
ence process is elegantly simple. Underlying this simplicity however
are some very significant implementation challenges. The key com-
putational task is the evaluation of integrals across high-dimensional
spaces, which typically do not have closed form solutions and are in-

tractable to compute using standard numerical integration approaches.

This intractability necessitates the use of approximate inference meth-
ods, the focus of this thesis. In particular we propose several novel ex-
tensions to MCMC methods, a class of approaches for drawing depend-
ent samples from high-dimensional target distributions. In the next
chapter we review the basic Monte Carlo method for integration and as-
sociated methods for generating and using independent pseudo-random
variates to estimate integrals. We then introduce the key Markov chain
theory underlying MCMC methods and review some key existing MCMC
algorithms. We will then conclude with an outline of the remainder of
the thesis, in particular giving a a summary of the novel contributions
made and how these relate to the specific inference problems discussed

in the last section of this chapter.
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In the previous chapter we argued that the key computational chal-
lenge in performing inference in probabilistic models is being able to
evaluate integrals with respect to probability distributions defined on
high-dimensional spaces. Generally these integrals will not have ana-
lytic solutions and for models with even moderate numbers of unob-
served variables, numerical quadrature approaches to evaluating integ-

rals are computationally infeasible.

In this chapter we will review some of the key algorithms proposed
for computing approximate solutions to inference problems. A unifying
aspect to all of these methods is trading off some loss of the accuracy of
the answers provided to inferential queries, for a potentially significant
increase in computational tractability. The literature on approximate
inference methods is vast and so necessarily this chapter will only be a

partial review of the methods directly relevant to this thesis.

Approximate inference methods can be roughly partitioned into two
groups: methods in which integrals with respect to the target distribu-
tion are estimated by averaging over samples from a distribution over
the target space and those in which a more tractable approximation to
the target distribution is found by optimising the approximation to be
‘close’ to the target distribution. In this chapter we will concentrate on

the sampling-based approaches to approximate inference.

In particular we will focus on Markov chain Monte Carlo (MCMC) meth-
ods, as these form the key basis for the contributions discussed in later
chapters. We will review the key theory underlying Monte Carlo in-
tegration and MCMC methods and some of the standard algorithms for
implementing these approaches. We will conclude with a discussion
of auxiliary variable MCMC methods which are central to the methods

discussed in the remainder of this thesis.

Although they are not the main focus of this thesis we will make use of
several optimisation-based approximate inference methods within the
algorithms discussed in the following chapters. We review the ideas

underlying these methods in Appendix C.
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Truth is much too
complicated to allow
anything but
approximations.
—John von Neumann
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2.1 MONTE CARLO METHODS

Inference at both the level of computing conditional expectations of
unobserved variables in a model and in evaluating evidence terms to
allow model comparison involves integrating functions against a prob-
ability distribution. Typically the distribution of interest will be defined
by a probability density with respect to a base measure. Therefore we

wish to be able to compute integrals of the form

/ F(x) P(dx) = / Fx) p(x) p(dx) (21)
X X

where p is the density of a target distribution P on a space X with re-
spect to a base measure p and f is a measurable function. For instance
in the case of computing the posterior mean in a Bayesian inference
problem with observed variables y and latent variables x where the
posterior density py|y is defined with respect to the D-dimensional Le-
besgue measure, we would have p(x) = pxjy(x|y) for an observed
y, p(x) = AP(x) and f(x) = x. Often we will only be able to evalu-
ate p up to an unknown normalising constant i.e. p(x) = %ﬁ(x) with
we able to evaluate p pointwise but Z intractable to compute. For ex-
ample in a Bayesian inference setting p(x) would be the joint density
Px,y(x,y) and Z the model evidence py (y). When performing inference
in undirected models, we would instead have that p is the product of

unnormalised factors and Z the corresponding normaliser.

2.1.1  Monte Carlo integration

The framework that unifies all of the methods we will discuss in this
section is the Monte Carlo method for integration [256]. Let x be a ran-
dom vector distributed according to the target distribution i.e. Px = P.
Given an arbitrary measurable function f : X — IR we define a ran-
dom variable f = f(x). Our task is to compute expectations E[f] = f
corresponding to the integral (2.1). We assume that E|[f] exists and both

E[f] and V[f] are finite. For now we assume we have a way of generat-

N
n=1’

ing values of N random variables {x,}'_,, each marginally distributed
according to the target distribution i.e. Py, = P Vn € 1... N but poten-

tially not independent of each other. We define random variables

N
~ 1
f,=f(x,) VYne{l...N} and fy= N;fn. (2.2)
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Due to linearity of the expectation operator, we have that
1 < 1 <
Elffn|== ) E[fi]== ) f=F 2.3
(] = § LBl = 5 27 =7 (23)

and so that in expectation fy is equal to f, i.e. realisations of fy are
unbiased estimators of f. Note that this result does not require any in-
dependence assumptions about the generated random variables. Now

considering the variance of f; we can show that

. V[f =22 Clf,
V[fn] = #(1 + % 2 ; %) (2.4)

If the generated random variables {xn}],:]:1 and so {fn}f:]:l are inde-
pendent, then C[f,,f,] = 0 Vm # n. In this case (2.4) reduces to
\/[FN] = V[f]/ N, i.e. the variance of the Monte Carlo estimate fy for f
is inversely proportional to the number of samples N. Importantly this

scaling does not depend on the dimension of x.

Therefore if we can generate a set of independent random variables
from the target distribution, we can estimate expectations that asymp-
totically tend to the true value as N increases, with a typical deviation
from the true value (as measured by the standard deviation, i.e. the
square root of variance) that is O(N 2 ) In comparison a fourth-order
quadrature method such as Simpson’s rule has an error that is O (N _%)
for a grid of N points uniformly spaced across a D dimensional space.
Asymptotically for D > 8, Monte Carlo integration will therefore give
better convergence than Simpson’s rule, and even for smaller dimen-
sions large constant factors in the Simpson’s rule dependence can mean

Monte Carlo performs better for practical N.

Note that computing Monte Carlo estimates from independent random
variables is not optimal in terms of minimising V [f N] for a given f; the
covariance terms in (2.4) can be negative which can reduce the overall
variance. A wide range of variance reduction methods have been pro-
posed to exploit this and produce lower variance of Monte Carlo estim-
ates for a given f [143]. Although these methods can be important in
practice for achieving an estimator with a practical variance for a spe-
cific f of interest, we will generally concentrate on the case where we

do not necessarily know f in advance.
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Figure 2.1.: Binary representation of linear congruential generator sequence
Sn+1 = 37sp + 61 mod 128. Columns left to right represents suc-
cessive integer states in sequence. From least significant (bottom)
to most significant (top), the bits in each column have patterns
repeating with periods 2, 4, 8, 16, 32, 64, 128.

2.1.2  Pseudo-random number generation

Virtually all statistical computations involving random numbers in prac-
tice make use of pseudo-random number generators (PRNGs). Rather than
generating samples via a truly random process', PRNGs produce determ-
inistic sequences of integers in a fixed range that nonetheless maintain
many of the properties of a random sequence. In particular through
careful choice of the updates, sequences with a very long period (num-
ber of iterations before the sequence begins repeating), a uniform dis-
tribution across the numbers in the sequence range and low correlation

between successive states can be constructed.

A very simple example of a class of PRNGs is the linear congruential

generator [149] which obeys the recurrent update
Sp+1=(asp+¢) modm with 0<a<m, 0<c<m, (2.5)

with a, ¢ and m integer parameters. If a, ¢ and m are chosen appropri-
ately, iterating the update (2.5) from an initial seed 0 < sp < m, will
produce a sequence of states which visits all the integers in [0, m) before
repeating. An example state sequence with m = 128 is shown in Figure
2.1. In practice, linear congruential generators produce sequences with
poor statistical properties, particularly when used to generate random
points in high dimensional spaces [166], hence most modern numer-
ical computing libraries use more robust PRNGs such as the Mersenne-

Twister [167], which is used in all experiments in this thesis.

The raw output of a PRNG is an integer sequence, with typically the
sequence elements uniformly distributed over all integers in a range
[0,2™) for some n € IN. All real values are represented at a finite pre-
cision on computers, typically using a floating point representation [11]

of single (24-bit mantissa) or double (53-bit mantissa) precision. Through

We consider a true random process as one in which it is impossible to precisely predict
the next value in the sequence given the previous values.
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Figure 2.2.: Visualisation of Box—Muller transform. Left axis shows uniform
grid on U = [0,1]? and right-axis shows grid points after mapping
through g in transformed space X = IR?%.

an appropriate linear transformation, the integer outputs of a PRNG can
be converted to floating-point values uniformly distributed across a
finite interval. PRNG implementations typically provide a primitive to
generate floating-point values uniformly distributed on [0, 1). Given the
ability to generate sequences of (effectively) independent samples from
a uniform distribution U (0, 1), the question is then how to use these to

produce random samples from arbitrary densities.

2.1.3 Transform sampling

Samples from many standard distributions can be generated by exploit-
ing the transformation of random variables relationships discussed in
1.1.4. Let u be a D-dimensional vector of independent random variables
marginally distributed according to U (0,1) and g : [0,1)P — X be
a diffeomorphism with X € RP. If we define x = g(u), then by the
change of variables formula (1.22) we have that

dg~'(x)

px(x) = ‘— : (2.6)

0x

For example for D = 2, X = R? and a bijective map g defined by

g ) _ v—2logus cos(2mtuy) |  _ [ x exp(—%(x12+x§))
Us v—2logu; sin(2muy) X ﬁ arctan

then we have that the density of the transformed x = g(u) is

B x*\ 1 x5
px(X) = \/ﬁ CXp(—?)E €Xp(—?), (27)
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i.e. x; and x, are independent random variables with standard normal
distributions N (0, 1). This is the Box-Muller transform [48], and allows
generation of independent standard normal variables given a PRNG prim-
itive for sampling from 7/ (0,1). A visualisation of the transformation

of space applied by the method is shown in Figure 2.2.

A general method for sampling from univariate distributions is to use
an inverse cumulative distribution function (CDF) transform. For a prob-
ability density p on a scalar random variable, the corresponding CDF
r: R — [0,1] is defined as

or(x)

r(x)=/_ p(v)ydv = Ix = p(x). (2.8)

If u is a standard uniform random variable and x = r~!(u) then

or(x)
ox

px(x) = = p(x). (2.9)

To be able to use the inverse CDF transform method we need to be

able to evaluate r!

, sometimes termed the quantile function. Often
neither the CDF or quantile function of a univariate distribution will
have closed form solutions however we can use polynomial approxim-
ation methods and iterative solvers to evaluate both to arbitrary preci-
sion [197]. For some distributions such as the standard normal N (0, 1)
even though the CDF and quantile function do not have analytic forms
in terms of elementary functions it is common for numerical comput-
ing libraries to provide approximations to both which are accurate to
within small multiples of machine precision. Although the inverse CDF
transform method gives a general recipe for sampling from univariate
densities, it is not easy to generalise to multivariate densities and altern-

atives can be simpler to implement and more numerically stable.

2.1.4 Rejection sampling

An important class of generic sampling methods, particularly due their
use as a building block in other algorithms, is rejection sampling [193].
Rejection sampling uses the observation that to sample from a distri-
bution with density p : X — [0, o) it is sufficient to uniformly sample

from the volume under the graph of (x, p(x)).

The key requirement in rejection sampling is to identify a proposal dis-

tribution Q which we can generate independent samples from and has
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X

Figure 2.3.: Visualisation of rejection sampling. The green curve shows the
(unnormalised) target density p, the green region underneath rep-
resenting the area we wish to sample points uniformly from. The
dashed orange curve shows the scaled proposal density Mg, with
the orange (plus green) region representing the area we uniformly
propose values from. Two example proposals are shown: ¢ is under
the target density and so accepted; = is outside of the green region
and so would be rejected.

Algorithm 1 Rejection sampling.

Input: p: unnormalised target density, g : normalised density of proposal
distribution Q, M : constant such that §(x) < Mqg(x) Vx € X.
Output: Independent sample from distribution with density p(x) = %ﬁ(x).

1 repeat

2 x~q()

w h~U(|0,Mg(x))
« until h < p(x)

s: return x

a density q = i—% that upper bounds the potentially unnormalised tar-
get density p across its full support X when multiplied by a known
constant M, i.e. p(x) < Mq(x) Yx € X. The requirement to be able to
generate independent samples from Q can be met for example by dis-
tributions amenable to transform sampling, e.g. the standard normal.
The second requirement is generally more challenging and as we will
see the efficiency of rejection sampling methods is very dependent on

how tight the bound can be made.

Algorithm 1describes the rejection sampling method to produce a single
independent sample from a target distribution. A visualisation of how
the algorithm works for a univariate target distribution is shown in
Figure 2.3. The overall aim is to generate points uniformly distributed
across the green area under the (unnormalised) target density curve.
This is achieved by generating points uniformly under the dashed or-
ange curve corresponding to the scaled proposal density and then ac-

cepting only those which are below the green curve. To generate a point
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1][0 () ](U)

> Mq(x)

Figure 2.4.: Factor graph of rejection sampling process.

under the dashed orange curve we first generate an x from the pro-
posal distribution and then generate an auxiliary ‘height’ variable by
sampling uniformly from [0, Mq(x)]. If the sampled height is below the
green curve we accept (as in the ¢ example in Figure 2.3) else we reject

the sample (as in the * example in Figure 2.3).

Figure 2.4 shows the rejection sampling generative process as a directed
factor graph, with x be a random variable representing the proposal, u
the uniform auxiliary variable drawn to sample the ‘height’ and a a
binary variable that indicates whether the proposal is accepted (a = 1)

or not (a = 0). By marginalising out u we have that that

p(x) )a( p(x) )H
x,alX,a) = qxX 1- R 2.10
pratx,0) = g0 o | (1= e (2.10)
and further marginalising over the proposal x
Z\4 7 1-a
pa(a) = (M) (1— M) . @2.11)

Conditioning on the proposal being accepted we therefore have that

1) px)
pxla(x | 1) = 7 = 7
M

= p(x). (2.12)

Therefore the accepted proposals are distributed according to the tar-
get density as required. Further from (2.11) we have that the p,(1) = A—Z/I
This suggests we can use the accept rate to estimate Z but also hints
at the difficulty in finding a M which guarantees the upper bound re-
quirement as for % to be a valid probability M > Z i.e. M needs to
be an upper bound on the unknown normalising constant Z. This re-
lationship also suggests it is desirable to set M as small as possible to

maximise the acceptance rate.

Although rejection sampling can be an efficient method of sampling
from univariate target distributions (particularly for distributions with

log-concave densities where adaptive variants are available [106]), it
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generally scales very poorly with the dimensionality of the target dis-
tribution. This is as the ratio of the volume under the target density
to the volume under the scaled proposal density (in terms of Figure
2.3 the ratio of the green area to the green plus orange regions), and so
the probability of accepting a proposal, will tend become exponentially
smaller as the dimensionality increases. This is an example of the so-
called curse of dimensionality. Therefore although rejection sampling
can be a useful subroutine for generating random variables from low-
dimensional distributions, in general it is not a viable option for gener-

ating samples directly for high-dimensional Monte Carlo integration.

2.1.5 Importance sampling

So far we have considered methods for generating samples directly
from a target distribution. Although samples can be of value in them-
selves for giving a representative set of plausible values from the target
distribution (e.g. for visualisation purposes), usually the end goal is to

estimate integrals of the form in (2.1).

Importance sampling [135] is a Monte Carlo method which allows arbit-
rary integrals to be estimated. If Q is a distribution, with density ¢ = ﬁ—g,
which is absolutely continuous with respect to the target distribution
(which requires that p(x) > 0 = q(x) > 0), then importance sampling

is based on the identity

"ﬁx

f—fx (x) p(x) p(dx) Jx f( ) CI(X) (dx)
= pr(x dx) - f E_ ( ) (dx) .

(2.13)

vv»&
—~

Each of the numerator and denominator in (2.13) take the form of an ex-
pectation of a measurable function of a random variable x with distribu-
tion Q. Further the denominator is exactly equal to Z = fX P(x) p(dx).
We therefore have that
7 _ b o < P
f =Elwkx)f(x)] and Z = E[w(x)] with w(x) = 70 (2.14)
q(x
If we can generate random variables {xn}f;]:1 each marginally distrib-
uted according to Q we can therefore form Monte Carlo estimates of

both the numerator and denominator. We define Zy and gn as

N

N
Iy = %Z w(xy) and gy = %Z wxa) fxa).  (215)

n=1
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Figure 2.5.: Visualisation of importance sampling. On both axes the green
curve shows the unnormalised target density p, the dashed orange

curve the density g values are sampled from and the dotted violet

curve the importance weighting function w(x) = % to estimate

expectations with respect to the target density using samples from
q. In the left axis the g chosen is under-dispersed compared to p
leading to very large w values in the right tail. In contrast in the
right axis, the broader g leads to less extreme variation in w.

By the same argument as Section 2.1.1, E [ZN] =ZandE[gn]| = Zf. We
can therefore use importance sampling to form an unbiased estimate

of the unknown normalising constant Z.

If we define fy = gn/ 7N, then this is a biased? estimator for f as
in general the expectation of the ratio of two random variables is not
equal to the ratios of their expectations. However if both the numerator
and denominator have finite variance, i.e. V [2 N] < ooand V[gn] < oo,

then fy is a consistent estimator for fie limy e E [FN] = f.

The w(x,) values are typically termed the importance weights. If a few
of the weights are very large, the weighted sums in (2.15) will be dom-
inated by those few values, reducing the effective number of samples
in the Monte Carlo estimates. This can particularly be a problem if the
are regions of X with low probability under g where p(x) > q(x). As
sampling points in these regions will be a rare event, a large number of
samples may be needed to diagnose the issue adding further difficulty.
A general recommendation is to use densities g with tails as least as
heavy of those of p, and in general the closer the match between g and
p the better [161, 198]. Figure 2.5 shows a visualisation of the effect of

the choice of g on the importance weights.

When previously discussing rejection sampling, we introduced an aux-

iliary binary accept indicator variable, a, associated with each proposed

_ r(x)
] ) q(x)
in which case the ratio estimator is not required and an unbiased estimates can be

calculated. As the problems we are interested in will generally have unknown Z we do
not consider this case further

In cases where the normalising constant Z is known, we can instead use w(x)
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sample x (see Figure 2.4). If we generate N independent proposal -
indicator pairs {xp, an}f;’:1 then the number of accepted proposals is

Nace = ZnN=1 ap. Conditioned on N, being a value more than one, the

N

=1 can be used to form

generated rejection sampling variables {x,, a, }

an unbiased Monte Carlo estimate of f using the estimator

N
A _anf(x
fip = S 2 ”), (2.16)
Zm=1 am
which just corresponds to computing the empirical mean of the accep-
ted proposals i.e. the standard Monte Carlo estimator. In comparison

importance sampling forms a biased but consistent estimator for f from

N samples {xn}ﬁ]:1 from a distribution Q using the estimator

Z],yzl w (xn)f(xn)

FIS _
N~ N
m=1 w(xm)

(2.17)

From this perspective the accept indicators a, in rejection sampling
can be seen to act like binary importance weights, in contrast import-
ance sampling using ‘soft’ weights which mean all sampled x, make a
contribution to the estimator (assuming w(x) # 0 Vx € X). However
this correspondence is only loose. The rejection sampling estimator f N
is unbiased unlike JI\? but this unbiasedness relies on conditioning on
anon-zero value for N, (i.e. the number of accepted samples to gener-
ate) and continuing to propose points until this condition is met. In con-
trast importance sampling generates a fixed number of samples from

Q and does not use any auxiliary random variables.

Unlike rejection sampling, there is no need in importance sampling for
q to upper-bound the target density. This allows more freedom in the
choice of g however it is still important to choose g to be as close as pos-
sible to the target while remaining tractable to generate samples from.
In general for target densities defined on high-dimensional spaces, it
can be difficult to find an appropriate g such that the variation in im-

portance weights is not too extreme [161].

2.2 MARKOV CHAIN MONTE CARLO

When introducing the Monte Carlo method we saw that is was not ne-
cessary for the random variables used in a Monte Carlo estimator to

be independent. While it can be impractically computationally expens-
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q ' T1(xo) ' Ta(x1) ' T3(x2) . Ta(x3)

Figure 2.6.: Markov chain factor graph. The initial state x, is sampled according
to a density q and each subsequent state x, is then generated from
a transition density T, conditioned on the previous state x,_;.

ive to generate independent samples from complex high-dimensional
target distributions, simulating a stochastic process which converges
in distribution to the target and produces a sequence of dependent ran-
dom variables is often a more tractable task. This is the idea exploited
by Markov chain Monte Carlo (MCMC) methods.

A Markov chain is an ordered sequence of random variables {xn}lry:0
which have the Markov property — for alln € {1...N}, x,, is condi-
tionally independent of {x;,}m<n-1 given x,_;. This conditional inde-

pendence structure is visualised as a factor graph in Figure 2.6.

For a Markov chain defined on a general measurable state space (X, F),
the probability distribution of a state x,, given the state x,_; is specified
for each n € {1... N} by a transition operator, To:FxX—> [0,1]. In
particular the transition operators define a series of regular conditional
distributions for eachn € {1...N}

Py (AlX) = Th(Alx) VAEF, xeX. (2.18)

We will often assume that the chain is homogeneous, i.e. that the same

transition operator is used for all steps T, = T Vn € {1...N}.

The key property required of a transition operator for use in MCMC
methods is that the target distribution P is invariant under the trans-

ition, that is it satisfies
P(A) = / T(A|x)P(dx) VAeF, (2.19)
X

The invariance property means that if a chain state x,, is distributed ac-
cording to the target P, all subsequent chain states xp+1, Xp42 ... Will
also be marginally distributed according to the target. Therefore given
a single random sample x, from the target distribution, a series of de-
pendent states marginally distributed according to the target could be

generated and used to form Monte Carlo estimates of expectations.
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Being able to generate even one exact sample from a complex high-
dimensional target distribution is generally infeasible. Importantly how-
ever the marginal distribution on the chain state Py, of a Markov chain
with a transition operator which leaves the target distribution invariant
will converge to the target distribution irrespective of the distribution
of the initial chain state if the target distribution is the unique invariant

distribution of the chain.

To have a unique invariant distribution, a chain must be irreducible and
aperiodic [250]. For a chain on a measurable space (X, ), irreducibility
is defined with respect to a measure v, which could but does not neces-
sarily need to be the target distribution P. A chain is v-irreducible if
starting at any point in X there is a non-zero probability of moving to

any set with positive v-measure in a finite number of steps, i.e.
Vx € X,AeF :v(A) >0 Ame Z* : Py x,(Alx) > 0. (2.20)

A chain is periodic (and aperiodic otherwise) if disjoint regions of X
are visited cyclically, i.e. there exists an integer » > 1 and an ordered
set of r disjoint P-positive subsets of X, {A;}!_, such that T(Aj |x) =
1Vx €A, ie{l...r}, j=(i+1) modr.

If we can construct a v-irreducible and aperiodic Markov chain {x, }1,:[:0
which has the target distribution P as its invariant distribution, then a
MCMC estimator f = % SN f(xn) converges almost surely as N —
o to f = [, fdP for all starting states except for a v-null set3[174].
This convergence of time-averages (i.e. over states at different steps of
the Markov chain) to space-averages (i.e. with respect to the stationary
distribution across the state space), is termed ergodicity and is a con-

sequence of the Birkhoff-Khinchin ergodic theorem [40].

Although irreducibility and aperiodicity of a Markov chain which leaves
the target distribution invariant are sufficient for convergence of MCMC
estimators, this does not tell us anything about the rate of that con-
vergence and so how to quantify the error introduced by computing
estimates with a Markov chain simulated for only a finite number of
steps. Stronger notions of ergodicity can be used to help quantify con-

vergence; we will concentrate on geometric ergodicity here. We first

The ‘except for a v-null set’ caveat can be removed by requiring the stronger property
of Harris recurrence [122].
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A stochastic process is
stationary if the joint
distribution of the
states at any set of
time points does not
change if all those
times are shifted by a
constant.
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define a notion of distance between two measures y and v on a meas-

urable space (X, ¥), the total variation distance, as
It = vllyy = sup|p(A) - v(A)]. (2.21)
AeF

For a v-irreducible and aperiodic chain with invariant distribution P
our earlier statement that the distribution on the chain state converges
to P can now be restated more precisely as that for v-almost all initial
states xg = X, lim,_,co||Px,, |x, (- | X) = P||, = 0. Geometric ergodicity
makes a stronger statement that the convergence in total variation dis-
tance is geometric in n, i.e. that

IPx,,1x, (- | x) = P||..., < m(x)r" (2.22)

TV —

for a positive measurable function m which depends on the initial chain
state x and rate constant r € [0,1). For chains which are geometrically
ergodic, we can derive an expression for the asymptotic variance of an
MCMC estimator fy related to the variance of a simple Monte Carlo

estimator previously considered in Section 2.1.1.

As in Section 2.1.1 we define f, = f(x;,) and fy = # Zﬁ:]:l f,,, with here
the {xn}ﬁrz1 the states of a Markov chain. For a homogeneous Markov
chain with a unique invariant distribution P which is stationary, the
marginal distribution on the states Py, is equal to P for all n and we
can use the expression for the variance of a general Monte Carlo es-
timator (which did not assume independence of the random variables)
stated earlier in (2.4). Further the stationarity of the chain means that
the covariance C|[f,, f,,] depends only on the difference n — m, and so

the variance of the estimator simplifies to

.1 V[f 5N = nClfy, fn
V[fy] = #(1+ZZ(NN %)) (2.23)

n=1

C{;‘)[f]” (the lag

n autocorrelations of {f,}), under the assumption that }}7" |pn| < o

If we multiply both sides of (2.23) by N and define p, =

in the limit of N — co we have that

léiinw(N\/[FN]) = \/[f](1 +2 i pn). (2.24)
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Now considering a chain which is geometrically ergodic from its initial
state, if E [|f|2+5] is finite for some § > 0 then it can be shown [58, 101,
228] that (2.24) is also the asymptotic variance for a MCMC estimator

calculated using the chain states.

This motivates a definition of the effective sample size (ESS) for an MCMC

estimator fy computed using a geometrically ergodic chain as

N

= 2.25
1+2 300 pn ( )

Net
The ESS quantifies the number of independent samples that would be
required in a Monte Carlo estimator to give an equivalent variance to
the MCMC estimator fy in the asymptotic limit N — co. In practice we
cannot evaluate the exact autocorrelations and so we can only compute
an estimated ESS, N, from one or more simulated chains with the es-
timation method needing to be carefully chosen to ensure reasonable
values [249]. Although the assumption of geometric ergodicity can of-
ten be hard to verify in practice and ESS estimates can give misleading
results in chains far from convergence, when used appropriately estim-
ated ESSs can still be a useful heuristic for evaluating and comparing
the efficiency of Markov chain estimators and are often available as a

standard diagnostic in MCMC software packages [55, 211, 236].

So far we have not discussed how to construct a transition operator
giving a chain with the required invariant distribution. As a notational
convenience we will consider the transition operator as being specified
by a conditional density we term the transition density t : X x X —
[0, 00) which is defined with respect to a base measure y (which we
assume to be the same as that which the target density we wish to
integrate against is defined with respect to, hence the reuse of notation).

The transition operator is then
T(A|x) = / t(x|x)p(dx’) VAeF, xeX. (2.26)
A

In practice the probability measure defined by a transition operator
will often have a singular component, for example corresponding to a
non-zero probability of the chain remaining in the current state. In this
case T is not absolutely continuous with respect to y and a transition
density is not strictly well defined. As we did in the previous chapter

however we will informally use Dirac deltas to represent a ‘density’ of
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singular measures, and so still consider a transition density as existing.
The requirement that the transition operator leaves the target distribu-
tion invariant, can then be expressed in terms of the target density p

and transition density t as

p(x’) = /XY(x' | x) p(x) p(dx) Vx' € X. (2.27)

Finding a transition density which leaves the target density invariant
by satisfying (2.27) seems difficult in general as it involves evaluating
an integral against the target density - precisely the computational task
which we have been forced to seek approximate solutions to. We can
make progress by considering the joint density of a pair of successive
states for a chain with invariant distribution P that has converged to

stationarity. Then we have that

pxnaxn—l(xl’x) = an|xn_1(x/ | x) pxn—l (x) = ?(x/ | x)P(x) (228)

We can also consider factorising this joint density into the product of
the marginal density of the current state py, and the conditional dens-
ity of the previous state given the current state py, ,|x,. Due to station-
arity py, is also equal to p and so we have that py, ,|x, must be the
density of a transition operator which also leaves P invariant, corres-
ponding to a time reversed version of the original (stationary) Markov
chain#. If we therefore denote t = py,_|x, (and which we will term
the backward transition density in contrast to t which in this context

we will qualify as the forward transition density), we have that
t(x'|x)p(x) = t(x|x)p(x’) Vx e X, x' € X. (2.29)

Integrating both sides with respect to x, we have that Vx’ € X
/X T’ 1) plx) () = /X el x) uldx) p(x') = p(x’),  (2.30)

and so that (2.27) is satisfied, with the last inequality arising due to t
being a normalised density on its first argument. Therefore if we can
find a pair of transition densities, t and T, satisfying (2.29), then the

transition operator specified by t will leave the target distribution P

The time reversal of a Markov chain is always itself a Markov chain irrespective of
stationarity (as the defining conditional independence structure is symmetric with
respect to the direction of time), however the reverse of a homogeneous Markov chain
which is not stationary will not in general itself be homogeneous.
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invariant (and by an equivalent argument so will the transition oper-
ator specified by t). We can further simplify (2.29) by requiring that
T = T = t, ie. that both forward and backward transition densities
(and corresponding operators) take the same form and so that the chain

at stationarity is reversible, in which case have that
t(x’ | x) p(x) = t(x|x")p(x") Vx e X, x" € X. (2.31)

This is often termed the detailed balance condition. Importantly both
the detailed balance (2.31) and generalised balance (2.29) conditions can
also be written in terms of the unnormalised density § by multiplying

both sides by Z, and so can be checked even when Z is unknown.

The restriction to reversible transition operators in detailed balance,
while sufficient for (2.27) to hold is not necessary. Markov chains which
satisfy the generalised balance condition but not detailed balance are
termed non-reversible, and there are theoretical results suggesting that
non-reversible Markov chains can sometimes achieve significantly im-
proved convergence compared to related reversible chains [74, 132, 191].
While there are several general purpose frameworks for specifying re-
versible transition operators which leave a target distribution invariant,
developing methods for constructing irreversible transition operators
with a desired invariant distribution has proven more challenging. The
approaches proposed to date are generally limited in practice to special
cases such as finite state spaces [243, 244, 255] or chains with tractable

invariant distributions such as the multivariate normal [38].

Nonetheless non-reversible Markov chains are still commonly used in
MCMC applications. Given a set of transition operators which each in-
dividually leave a target distribution invariant, the sequential composi-
tion of the transition operators will by induction necessarily also leave
the target distribution invariant. Even if the individual transition op-
erators are all reversible, the overall sequential composition will gen-
erally not be (instead having an adjoint ‘backward’ operator corres-
ponding to applying the individual transitions in the reversed order).
Sequentially combining several reversible transition operators is com-
mon in MCMC implementations, though this is more often the result of
each individual operator not meaning the requirements for ergodicity
in isolation and so needing to be combined with other operators, rather

than due to a specific aim of introducing irreversibility.
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- q(x | xn)
..... a(x | xn)q(x|xn)
P(xn)

Figure 2.7.: Visualisation of Metropolis—Hastings algorithm in a univariate
target distribution. The green curves shows the unnormalised target
density. The arrows indicate the current chain state. The orange
curves show the density of proposed moves from this state, with the
left axis using a narrower proposal than the right. The violet curves
show the proposal density scaled by the acceptance probability of
the proposed move, this reducing the probability of transitions to
states with lower density than the current state. The orange region
between the violet and orange curves represents the probability
mass reallocated to rejections by the downscaling by the acceptance
function. The broader proposal in the right axis has an increased
probability of making a move to the other mode in the target density
but at a cost of an increased rejection probability.

Having now introduced the key theory underlying MCMC methods, we
will now discuss practical implementations of the approach. In the fol-
lowing sub-sections we review two of the most popular frameworks for
constructing reversible transition operators which leave a target distri-

bution invariant: the Metropolis—Hastings algorithm and Gibbs sampling.

2.21 Metropolis—Hastings

Although the The seminal Metropolis—Hastings algorithm provides a general frame-
algorithm has come
to be commonly
known by Edward tion and is ubiquitous in MCMC methodology. The original Rosenbluth—
Metropolis’ name as
first author on the
1953 paper [173], it is nings of the Monte Carlo method, having being first implemented on
believed that Arianna
and Marshall
Rosenbluth, two of the The method was generalised in a key paper by Hastings [127], and
other co-authors, were
the main contributors
to the development of used demonstrated by Peskun [207]. An extension to Markov chains
the algorithm [119].

work for constructing Markov chains with a desired invariant distribu-

Teller—Metropolis variant of the algorithm [173] dates to the very begin-

Los Alamos’ MANIAC- one of the earliest programmable computers.

the optimality among several competing alternatives of the form now

on trans-dimensional spaces was proposed by Green [117].

An outline of the method is given in Algorithm 2 and a visualisation of
its application to a univariate target distribution shown in Figure 2.7.

The key idea is to propose updates to the state using an arbitrary trans-

5 Mathematical Analyzer, Numerical Integrator and Computer.
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Algorithm 2 Metropolis—Hastings.

Input: x, : current chain state, p: unnormalised target density,
q : normalised proposal density which we can sample according to.
Output: x,.; : next chain state with x, ~ p(-) = xp41 ~ p(:).

X" ~q(- ] xp) > Generate proposed new state
a2 u~U(-0,1)

: P(x")qlxn|x”)
3 ifu< m then

4 Xpi1 — X* > Proposed move accepted
s. else
6 Xpt1 < Xp > Proposed move rejected

ition operator and then correct for this transition operator not necessar-
ily leaving the target distribution invariant by stochastically accepting
or rejecting the proposal. If a proposal is rejected the chain remains at
the current state, otherwise the chain state takes on the proposed value.

The transition density corresponding to Algorithm 2 is

tx 1) = alx’ | x) gx’ | x)+

(2.32)
(1— [ et 1096 |x>u<dx*>)5(x'—x>,
X
with the acceptance probability a : X x X — [0,1] defined as
pooy o fo g XD p(x) | [ g(x [x7) p(x”)
a(x’|x) = mln{l, 2 1) p(x) } = mm{l, G 1) ) }, (2.33)

and q : X X X — [0, o) the proposal density.

The original Rosenbluth-Teller-Metropolis algorithm used a symmet-
ric proposal density g(x"|x) = q(x|x’) Vx € X, x’ € X (with the
extension to the non-symmetric case being due to Hastings [127]), in

which case the acceptance probability definition simplifies to

PN B -(C 20 (NN Py (€
a(x’|x) = mln{l, ) } = mln{l, 50 } (2.34)

Note that in both (2.33) and (2.34) the target density only appears as a

ratio and so only need be known up to a constant.

For the purposes of verifying the detailed balance condition (2.31), the
density of self-transitions, i.e. a transition to the same state, can be ig-
nored as (2.31) is trivially satisfied for x” = x. Considering therefore

the cases x # x” where the Dirac delta term representing the singular
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component corresponding to rejected proposals can be neglected, we
haveVx e X, x' e X:x #x

q(x|x’) p(x’)

q(x’| x)p(x) }Q(x’ | x)p(x) (2.35)

t(x’ | x) p(x) = min{l,

= min{g(x" | x) p(x), g(x | x) p(x")} (2.36)
_ gl x) p(x) N et

= mm{—q(x ) p(x)’ 1} q(x|x") p(x’) (2.37)
= t(x | x") p(x”). (2.38)

Therefore the detailed balance condition is satisfied, and the Metropolis—

Hastings transition operator leaves the target distribution P invariant.

A special case for chains on a Euclidean state space X = RP, is when
the proposal transition operator is deterministic and corresponds to a
differentiable involution of the current state. Let ¢ : X — X be an
involution, i.e. ¢ o ¢(x) = x VX with Jacobian determinant Dy (x) =
‘ %| which is defined and non-zero P-almost everywhere. Then if we

define a transition operator via the transition density

t(x"[x) = 6(x" = p(x))a(x) + 5(x" — x)(1 - a(x)),

po¢(x)

. (2.39)
a(x)=m1n{1, 20x) D¢(x)},

then this transition operator will leave the target distribution P invari-
ant. This deterministic transition operator variant is as a special case
of the trans-dimensional Metropolis-Hastings extension introduced by
Green [102, 117]. To generate from this transition operator from a cur-
rent state x we compute the proposed move ¢(x) and accept the move
with probability a(x). We can demonstrate that this transition operator

leaves P invariant by directly verifying (2.27)

/t(x'lx)p(x) dx (2.40)
X
:/Xé(x’—qb(x))a(x)p(x)+5(x’—x)(1—a(x))p(x)dx (2.41)

=/X(S(x'—y)aO¢(y)P0¢(y)D¢(y)dy+(1—a(X'))P(X') (2.42)

=p(x') +ao¢(x’)pop(x’) Dy(x) - alx’) p(x’). (2.43)
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In going from (2.42) to (2.43) we use a change of variables y = ¢(x)
in the integral. As ¢ is an involution we have that ¢ o ¢(x’) = x’ and
Dgo¢p(x') = qu(x’)_1 and so

a0 ¢(x)po p(x")Dy(x") = min{p o p(x") Dy (x"), p(x") } = a(x")p(x").

The last two terms in (2.43) therefore cancel and so (2.27) is satisfied by
the transition operator defined by (2.39).

Although this transition operator leaves the target distribution P invari-
ant, it is clear that it will not generate an ergodic Markov chain. Starting
from a point x the next chain state will be either ¢(x) if the proposed
move is accepted or x if rejected. In the former case the next proposed
move will be to ¢ o ¢(x) = x i.e. back to the original state. Therefore the
chain will visit a maximum of two states. However as noted previously
we can sequentially compose individual transition operators which all
leave a target distribution invariant. Therefore a deterministic proposal
Metropolis—Hastings transition can be combined with other transition

operators to ensure the chain is irreducible and aperiodic.

In general for a Metropolis—Hastings transition operator to be irredu-
cible, it is necessary that the proposal operator is irreducible [250], how-
ever this is not sufficient. For a target density which is positive every-
where on X = RP, then a sufficient but not necessary condition for
irreducibility is that the proposal density is positive everywhere [228].
If the set of points with a non-zero probability of rejection has non-zero

P-measure, then the transition operator is aperiodic [250].

A common choice of proposal density when the target distribution is
defined on R is a multivariate normal density centred at the current
state i.e. g(x’ | x) = N(x"|x,X) which satisfies the positivity condi-
tion for irreducibility. In general we would achieve optimal perform-
ance with a proposal density covariance X which is proportional to
the covariance of the target distribution [231]. In practice we do not
have access to the true covariance and so typically an isotropic pro-
posal density is used with covariance X = oI controlled by a single
scale parameter o, often termed the step size or proposal width. This pro-
posal density is symmetric so the simplified acceptance rule (2.34) can
be used, further the proposal density depends only on the difference
x’ — x with Metropolis—-Hastings methods having these properties of-

ten termed random-walk Metropolis.
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10 12

----- D=49 -- D=100

Figure 2.8.: lllustration of concentration of measure in a multivariate normal
distribution. The plots shows the probability density of the distance
from the origin r = ||x||, of a D-dimensional multivariate normal
random vector x ~ N (0,I) for different dimensionalities D. As the
dimension increases most of the mass concentrates away from the
origin around a spherical shell of radius VD. For a multivariate
normal random vector with mean p and covariance X this general-
ises to the mass being mainly in an ellipsoidal shell aligned with
the eigenvectors of X and centred at p.

Random walk Metropolis methods have been extensively theoretically
studied, with sufficient conditions known in some cases to ensure geo-
metric ergodicity of a chain [172, 230] though these can be hard to
verify in practical problems. There has also been much work on prac-
tical guidelines and methods for tuning the free parameters in the al-
gorithm, including approaches for tuning the step-size using accept-
ance rates [94, 227] and adaptive variants which automatically estimate

a non-isotropic proposal covariance [121, 231].

In general the choice of proposal density will be key in determining the
efficiency of Metropolis—Hastings MCMC methods. Ideally we want to
be able to propose large moves in the state space to reduce the depend-
encies between successive chain states and so increase the number of
effective samples, however this needs to be balanced with maintaining
a reasonable acceptance probability with large proposed moves often
having a low acceptance probability. Figure 2.7 gives an illustration of

this trade-off in a one-dimensional example.

In high-dimensional spaces this issue is much more severe due to the
phenomenon of concentration of measure: in probability distributions
defined on high-dimensional spaces most of the probability mass will
tend to be concentrated into a ‘small’ subset of the space [13, 161]. Anil-
lustration of this phenomenon for the multivariate normal distribution
is shown in Figure 2.8, where the mass in high dimensions is mostly
located in a thin ellipsoidal shell. The region where most of the mass

concentrates, termed the typical set of the distribution, will for the tar-
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Figure 2.9.: Schematic of Gibbs sampling transition in a bivariate normal target
distribution (ellipses indicate constant density contours). Given
an initial state x = (xq, x3), the x; (horizontal) co-ordinate is first
updated by independently sampling from the normal conditional
PxIx, (* | X2), represented by the orange curve. The new partially
updated state is then x = (x],x;). The second x, (vertical) co-
ordinate is then independently resampled from the normal condi-
tional py,|x, (- | x), shown by the green curve. The final updated
state is then x = (x7, x7).

Algorithm 3 Sequential-scan Gibbs.

Input: x, : current chain state, I : ordered set of indices of all individual
variables in chain state, {p;};cs : set of complete conditionals of target
density p which can all be sampled from.

Output: x,. : next chain state with x, ~ p(-) = xp41 ~ p(-).

X & Xp
2 forieIdo
3: x; ~ pi(-1x\i) > Resample x; from p; given current x\;.

4 Xpp1 < X

get distributions of interest generally have a significantly more com-
plex geometry. Finding proposals which can make large moves in such
settings is challenging: moves in most directions will have a probab-
ility of acceptance which exponentially drops to zero as the distance
away from the current state is increased and so simple proposal dens-
ities which ignore the geometry the typical set such as those used in
random-walk Metropolis will need to make very small moves to have

a reasonable probability of acceptance [33].

2.2.2  Gibbs sampling

Gibbs sampling [93, 100], originally proposed by Geman and Geman for
image restoration using a Markov random field image model, is based
on the observation that a valid transition operator for a joint target
distribution across many variables, is one which updates only a subset

of the variables and leaves the conditional distribution on that subset
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given the rest invariant. Although if used in isolation a transition op-
erator which only updates some components of the state will not give
an ergodic chain, as discussed previously multiple transition operators

can be combined together to achieve ergodicity.

More specifically the original formulation of Gibbs sampling defines
a Markov chain by sequentially independently resampling each indi-
vidual variable in the model from its conditional distribution given the
current values of the remaining variables. If I is an index set over the
individual variables in the vector target state x, then for each i € I we
partition the state x into the i variable x; and a vector containing all
the remaining variables x\;. For each i € I the target density can be
factorised in to the marginal density p\; on x\; and conditional density

pi on x; given xy;, i.e.

p(x) = pilxi | x\i) prilx\i), (2.44)

with the conditional densities {p;};c; termed the complete condition-
als of the target density. If each of these complete conditionals corres-
ponds to a distribution we can generate samples from (for example us-
ing a transform method or rejection sampling) then we can apply the
sequential Gibbs sampling transition operator defined in Algorithm 3

and visualised for a bivariate example in Figure 2.9.

The sequential Gibbs transition is irreducible and aperiodic under mild
conditions [57, 229]. Rather than using a deterministic sequential scan
through the variables, an alternative is to randomly sample without re-
placement the variable to update on each iteration; unlike the sequen-
tial scan version this defines a reversible transition operator. The ran-
dom update variant is more amenable to theoretical analysis, however
in practice the ease of implementation of the sequential scan variant
and computational benefits in terms of memory access locality mean it
seems to be more often used in practice [128]. A compromise between
the completely random updates and a sequential scan is to randomly

permute the update order after each complete scan.

A apparent advantage of Gibbs sampling over Metropolis—Hastings is
the lack of a proposal density which needs to be tuned. This has helped
popularise ‘black-box’ implementations of Gibbs sampling such as the
probabilistic modelling packages BUGS [105] and JAGS [210]. A well-

known issue with Gibbs sampling however is that its performance is
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highly dependent on the parameterisation used for the target density
[217], with strong correlations between variables leading to large de-
pendencies between successive states and slow convergence to station-
arity. This can be alleviated in some cases by using a suitable repara-
meterisation to reduce dependencies between variables, however this

restores the difficulty of tuning free parameters.

Gibbs sampling updates do not necessarily need to be performed by
sampling from complete conditionals of single variables - in some cases
the complete conditional of a vector of variables has a tractable form
which can be sampled from as a ‘block’; this motivates the name block
Gibbs sampling for such variants. By accounting for the dependencies
between the variables in a block this can help alleviate some of the

issues with highly correlated targets where applicable.

Compound terms such as Metropolis-within-Gibbs are sometimes used
to refer to methods which sequentially apply Metropolis transition op-
erators which each update only a subset of variables in the target distri-
bution. We will however consider the defining feature of Gibbs sampling
as being exact sampling from one or more conditionals rather than se-
quentially applying transition operators which update only subsets of

variables and so will only refer to ‘Gibbs sampling’ in that context.

2.3 AUXILIARY VARIABLE METHODS

Although Gibbs sampling and random-walk Metropolis are commonly
used in practice, as discussed above both have drawbacks when applied
to complex high-dimensional target distributions. One approach which
has proven particularly successful for constructing alternative Markov
transition operators which can overcome some of these shortcomings
is the introduction of auxiliary variables in to the chain state. For con-
creteness of notation in the following discussion we let the variables
of interest, which we term the target variables, be represented by the
random vector x € X and the introduced auxiliary variables by the
random vector a € A. We assume for generality here multiple auxil-
iary variables are introduced, however methods using a single scalar

auxiliary variable are a common special case.

One way of defining a joint distribution across the target and auxil-

iary variables is to specify an arbitrary conditional distribution Py«
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and choose the marginal distribution Py to be equal to the target distri-
bution P. Given samples from a joint distribution we can estimate ex-
pectations with respect to the marginal distribution on a subset of the
variables by simply ignoring the dimensions of the sampled state we
wish to marginalise over. Therefore if we can construct a Markov chain
with the resulting joint distribution Py, as its unique invariant distri-
bution, then we can use the target variable components of the sampled
states to estimate expectations with respect to the target distribution.
We will consider two MCMC methods using this approach, slice sampling

and Hamiltonian Monte Carlo in Sections 2.3.1 and 2.3.2.

An alternative approach is to instead construct a joint distribution on
the target and auxiliary variables such that the regular conditional dis-
tribution Py, is equal to the target distribution P across some set of
values A* C A of the auxiliary variables. In terms of the density px|a

this requires that
pxja(x | @) = p(x) Vx € X,ae A" (2.45)

If the marginal probability P,(A*) is non-zero, then the sampled states
{x(m), a(”)}ﬁil of a Markov chain which has Py, as its unique invari-
ant distribution can be used to estimate expectations with respect to
the target distribution by computing averages over only the sampled
target variable values x(™ for which the corresponding auxiliary vari-
ables a'™ take values in A* (these being at convergence samples from

Px|a(- | @) and so the target distribution), i.e.

Sy Tar (@) f(x™)
ZnN=1 ﬂA* (a(n)) ‘

/f(x) P(dx) = lim (2.46)
X N-ooo
We will discuss simulated tempering, an MCMC method which intro-

duces an auxiliary variable in this manner in Section 2.3.3.

An issue with this approach is that if P,(A") is small, the number of
sampled states with a € A* may be very small or even zero. This can
require a large number of samples N for the sufficient samples with
auxiliary variables in the required set A* to be generated to allow the

MCMC estimates computed using (2.46) to be reliable.

The estimator in (2.46) has a close resemblance to the formulation of
the Monte Carlo estimator corresponding to rejection sampling given

in (2.16), with averages computed over the subset of samples meeting
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Figure 2.10.: Schematic of linear slice sampling, showing ‘plan’ (left) and ‘cross-
sectional’ (right) views of a bivariate target density. Orange curve
(left) and line (right) indicates a constant density slice Sy,. The black
square indicates current target state value x and the dashed line
is slice line, the one-dimensional linear sub-space aligned with the
vector v which a new value from the state will be sampled on. The
extents of the dashed line segment represent the initial bracket
new proposed states will be drawn from. Points are proposed
on the slice line by drawing a value uniformly from the current
bracket. The red circle represents an initial proposed point which
is not in the slice and so the right bracket edge is shrunk to this
point. The violet circle shows a second sampled point from the
new reduced bracket, this point within the slice and so returned
as the updated target state.

an ‘acceptance’ criteria. As noted previously rejection sampling can in
fact be considered as an auxiliary variable method, with binary accept
indicator variables a € {0, 1} introduced such that the conditional dens-
ity pxja(x]1) is equal to the target density p(x) as shown in (2.12), i.e.
exactly corresponding to the property in (2.45). Rejection sampling can
therefore be seen to be an example of this construct, though in this case
each pair of target — auxiliary variable samples are generated independ-

ently rather than by constructing a Markov chain.

When discussing the rejection sampling estimator (2.16) we saw there
was a close link to importance sampling estimator (2.17), with the im-
portance sampling estimator having the potential advantage however
of using all of the generated samples in computing estimates. In Chapter
5 we will discuss a related alternative approach to constructing estimat-
ors for auxiliary variable methods based on conditioning like simulated
tempering, which unlike the estimator in (2.46) allows using all of the

samples in a Markov chain to compute estimates.

2.3.1 Slice sampling

Slice sampling is a family of auxiliary variable MCMC methods which
exploit the same observation as used to motivate rejection sampling -
to sample from a target distribution it is sufficient to uniformly sample

from the volume beneath a graph of the target density function. Rather
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Algorithm 4 Linear slice sampling.

Input: x, : current chain state, § : unnormalised target density,
q : slice vector density, M : maximum number of step out iterations.
Output: x,. : next chain state with x, ~ p(-) = xp41 ~ p().

. h~U0,p(xp)) > Sample slice height
2 v~q() > Sample vector setting slice line and initial bracket width
3 by ~U(-10,1) > Uniformly sample bracket around current state
¢ by —b,—1

5. if M > 0 then (b;, b,) < LINEARSTEPOUT(Xx,, b;, by, M)

& A~UC(|byby)

7 while TRUE do

8: x*e—x,+Av > Update proposed state
9 if p(x*) < h then > Proposed point not on slice
10: if A <0thenb; « delseb, «— A > Shrink slice bracket
1n: A~U(|b,by) > Sample uniformly from new bracket
12: else > Proposed state on slice
13: return x*

14: function LINEARSTEPOUT(X ,, b;, by, M)

15 L ~ UniformiInt(- | 0, M) > Sample integer uniformly from [0, M]

16: Ue—M-L
17: while L > 0 and f(x, + bjv) > hdo » Step out lower bracket edge

18: by — b —1

19: L—L-1

20: while U > 0 and p(x, + b,v) > h do » Step out upper bracket edge
21: b, « b, +1

22: U<U-1

23: return b}, b,

than generate independent points from this volume as in rejection samp-
ling, slice sampling instead constructs a transition operator which leaves

the uniform distribution on this volume invariant.

The method we will concentrate on here was proposed by Neal [188,
190]. A related algorithm which uses per data-point auxiliary variables
in Bayesian inference problems was developed by Damien, Wakefield
and Walker [69]. Murray, Adams and Mackay later proposed ellipt-
ical slice sampling [183], an extension of Neal’s slice sampling method
which is particularly effective for target distributions which are well

approximated by a multivariate normal distribution.

Slice sampling defines a Markov chain on an augmented state space by
introducing an auxiliary height variable h € [0, c0) in addition to the

target variables x € X. The conditional density on h is

" 1
Phix(h|x) = U(h|0,p(x)) = ) Tio,50x)) (h), (2.47)
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i.e. uniform over the interval between zero and the unnormalised target
density value. The joint density on the augmented space is then
b(x)

1 p 1
Px,h (x,h) = % 1][(),‘ﬁ(x))(h) 7 = E ]][O,ﬁ(x))(h)- (2.48)

Marginalising (2.48) over h recovers the target density i.e. px = p.

The overall slice sampling transition is formed of the sequential com-
position of a transition operator which updates h given x and a second
operator which updates x given h, each leaving the distributions cor-
responding to the conditional densities ppjx and pxjn respectively in-
variant, and so by the same argument as for Gibbs sampling the over-
all transition leaving the target distribution invariant. By construction
the conditional density ppx is a simple uniform density and so the first
transition operator is a Gibbs sampling update in which the height vari-
able is independently resampled from U (0, f(x)), where x is the cur-

rent value of the target state x.

The conditional density pyjn(x | k) is also locally uniform, equal to a
positive constant whenever p(x) > h and zero elsewhere. However we
can usually only evaluate the density up to an unknown constant as
we cannot compute the measure of the set S, = {x € X : p(x) > h}
that the density is non-zero over. In general Sj, which is the eponym-
ous slice of slice sampling (so called as it represents a slice through the
volume under the density curve at a fixed height k), will have a com-
plex geometry including potentially consisting of several disconnected
components in the case of multimodal densities. The complexity of the
slices generally prevents us therefore from being able to independently
sample a new value for x uniformly from S, and so we cannot use a full
Gibbs sampling scheme corresponding to sequentially independently

sampling from Pp|x and Pyp.

A key contribution of [190] was to introduce an elegant method for con-
structing a transition operator which leaves Py, invariant. In particular
the algorithm has few free parameters to tune, has an efficiency which
is relatively robust to the choices of the free choices that are introduced,
and will for smooth target densities always move the target state by
some amount (in contrast to the potential for rejections in Metropolis-
Hastings methods). This method is summarised in Algorithm 4 and a

visualisation of the process shown in Figure 2.10.
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An important first step in the algorithm is reducing the problem of gen-
erating a point uniformly on the multidimensional slice Sy, to making
a move on a one-dimensional linear subspace of this slice (motivating
our naming of this algorithm linear slice sampling) which includes the
current x state. In the original description of the algorithm in [190] the
one-dimensional subspace is chosen to be axis-aligned, corresponding

to updating a single component of the target state.

In the case of an axis-aligned subspace the restriction of the slice to
the one-dimensional subspace is entirely specified by the conditional
density on the chosen variable component given the current values of
the remaining components in the state. Slice sampling transitions for
each variable in the target state can then be applied sequentially akin to
Gibbs sampling, but with the advantage over Gibbs of not requiring the
complete conditionals to be of a tractable form which we can generate
exact samples from. If conditional independency structure in the target
density means the complete conditionals depend only on local subsets
of variables in the target state using updates of this form has the advant-
age of exploiting this locality. As with Gibbs sampling however apply-
ing slice sampling in this manner makes performance strongly depend-
ent on the parameterisation of the target density, with large magnitude

correlations likely to lead to slow exploration of the space.

In [190] various multivariate extensions of the algorithm are suggested
which could help counter this issue, however they add significant im-
plementation complexity compared to the basic algorithm. A simpler
alternative is to define the one-dimensional subspace as being the line
defined by a randomly chosen vector and passing through the current
value of x. If this vector is generated independently of the current state
this is sufficient to ensure the overall transition retains the correct in-

variant distribution.

If little is known about the target distribution a reasonable default is
to sample a unit vector of the required dimensionality by generating
a random zero-mean isotropic covariance multivariate normal vector
and then scaling it to unit norm; if an approximate covariance matrix
is known for the target density then instead generating the vector from
N (0, X) prior to normalising might be a better choice (as it favours
moves aligned with the principle eigenvectors of X) however in this
case elliptical slice sampling, which we will discuss shortly, will often

be a better choice.
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(a) Axis-aligned updates (b) Random direction updates

Figure 2.11.: Samples generated using (a) axis-aligned versus (b) random-
direction linear slice sampling in a correlated bivariate normal
distribution. In both cases 1000 transitions where performed (with
random selection of axis to update on each iteration in (a)) with
every second sampled state shown. the maximum number of step
out iterations is M = 4 and the initial bracket width is fixed at
w = 1. The dotted ellipse shows the contour of the target density
which contains 0.99 of the mass. The random direction chain is
able to explore the typical set of the target distribution more effect-
ively in this case with the axis-aligned updates leading to slower
diffusion along the major axis of the elliptical contour.

This random-direction slice sampling variant is discussed in compar-
ison to elliptical slice sampling in [183]. It is also bears resemblance to
the scheme proposed in [59] which uses the same auxiliary variable for-
mulation as slice sampling, but there the random direction is chosen in
X % [0, 0) i.e. to update both x and h and not used with the remainder
of Neal’s slice sampling algorithm. An example comparison of apply-
ing axis-aligned and random-direction linear slice sampling updates to
a strongly positively correlated bivariate normal target distribution is
shown in Figure 2.11. In this toy example the isotropic random-direction

updates are able to more effectively explore the target density.

The generation of the vector v determining the one-dimensional sub-
space of the slice the update is performed on is represented in Algorithm
4 by Line 2 by v being generated from a distribution with density g. As
well as specifying the direction of the slice line, the vector v also spe-
cifies a scale along this line. In Neal’s description of the algorithm this
is represented by the explicit bracket width parameter w. Here instead
we assume this parameter is implicitly defined by the Euclidean norm
of the vector v, through suitable choice of g this allowing for direc-

tion dependent scales and also the possibility of randomisation of the
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scale; as we will see shortly however compared to for example random-
walk Metropolis updates with a normal proposal, linear slice sampling
is much less sensitive to the choice of scale parameters, therefore a

single fixed scale will often be sufficient.

Once the slice line direction and scale has been chosen, the remainder
of the algorithm can be split into two stages: selection of an initial
bracket on the slice line and including the point corresponding to the
current state; iteratively uniformly sampling points within the current
bracket, accepting the point if it is within the slice Sy, otherwise shrink-
ing the bracket and repeating. The algorithm proposed by Neal ensures
both these stages are performed reversibly such that the detailed bal-

ance condition (2.31) is maintained.

The slice bracket defines a contiguous interval A € [b, b,] on the slice
line x*(1) = x, + Av and always includes the point A = 0 correspond-
ing to the current state. The initial bracket is chosen by sampling a
upper bound b,, uniformly from [0, 1] and then setting b; « b, — 1; in
the A slice line coordinate system this corresponds to a bracket width of
one, however in general the slice line vector v can have non-unit length
and so defines the initial bracket width in the target variable space. Ran-
domising the positioning of the current state within the bracket ensures
reversibility as the resulting bracket would have an equal probability
(density) of being selected from any other point in the bracket (which
the final accepted point will be within).

In general only a subset of the points in the current slice bracket will
be within the slice Sj. As new states are proposed by sampling a point
uniformly from the current bracket, the probability of such a proposal
being in the slice will be equal to the proportion of the bracket that
intersects with the slice Sy. In general therefore it is desirable for the
bracket to include as much of the slice as possible while not making
the proportion of the bracket intersecting with the slice too small such
that many points need to be proposed before a point on the slice is
found. The magnitude of v determines the initial bracket extents and so
should ideally chosen based on any knowledge of the ‘typical scale’ of
the target density. Often we will have little prior knowledge about such
scaling however and the scale will often vary significantly across the
target space, and so we may choose an initial bracket which includes

only a small proportion of the slice.
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The stepping out routine proposed by [190] and detailed in Lines 14
to 23 in Algorithm 4 is designed to counter this issue. The initial slice
bracket [by, b, | is iteratively ‘stepped-out’ by incrementing / decrement-
ing the upper / lower bracket bounds until the corresponding endpoint
of the bracket lies outside the slice or a pre-determined maximum num-
ber of steps out have been performed. Ideally the step out routine will
return a bracket which contains all of the intersection of the slice with
the slice line while not also including too great a proportion of off slice
points; in general the slice may be non-convex or consist of multiple
disconnected components and so the intersection of the slice line with
the slice may consist of multiple disconnected intervals in which case
the stepping out routine will likely only expand the slice to include a
subset of these intervals. The adaptivity provided by the stepping out
routine will still however generally help to make the performance of
the sampler much less sensitive to the choice of the bracket scale in

contrast to for example random-walk Metropolis algorithms.

Analogously to the randomisation of the initial bracket positioning, in
the stepping out routine if a maximum number of step out iterations
M is set, the resulting step ‘budget’ is randomly allocated between in-
crements of the upper bound b, and decrements of the lower bound
b; such that final extended bracket generated by the step out routine
would have an equal probability of being generated from any point
within the generated bracket interval. If M is set to zero this corres-
ponds to not performing any stepping out and simply using the initial
sampled bracket; although reducing the robustness of the algorithm to
the choice of the initial bracket width this option has the advantage
of minimising the number of target density evaluations by not requir-
ing additional density evaluations at the bracket endpoints during the
step-out routine. An alternative ‘doubling’ step-out routine was also
proposed in [190]. This has the advantage of exponentially expanding
the slice bracket compared to the linear growth of the step-out routine
described in Algorithm 4 and so can be more efficient in target distri-
butions where the typical scales of the density varies across several
orders of magnitude. The doubling procedure requires a more complex
subsequent procedure for sampling points in the resulting bracket how-

ever to ensure reversibility.

Once the initial bracket has been generated and potentially stepped out,

the remainder of the algorithm consists of finding a point on the slice
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Algorithm 5 Elliptical slice sampling.

Input: x, : current chain state, § : unnormalised target density,
1, X : mean and covariance of normal approximation to target.
Output: x,. : next chain state with x, ~p = x,41 ~ p.

t h~UGC|0,p(xn) /N (xn |1, X)) > Sample slice height
20~ N(|pX) > Sample vector setting slice ellipse
3 0, ~U(-|0,2m) > Uniformly sample bracket around current state
¢ 0 «0,-2x

5. 0« 0,

s while TRUE do

7 X" — (xp,—p)cosO+ (v—p)sinf+pu > Update proposed state
8 if p(x*)/N(x*| p, X) < h then > Proposed point not on slice
9 if 6 <0then 6, <« Oelsed, «— 0 > Shrink slice bracket
10: 0~U(106,6,) > Sample uniformly from new bracket
11 else

12: return x*

line bracket which is within the slice S,. This is done in an iterative
manner by first sampling a point uniformly from the current bracket
and checking if it is in the slice or not. If the proposed point is in the
slice, the corresponding value for the target variables is returned at
the new state. Otherwise the proposed point is set as the new upper or
lower bound of the bracket such that the point corresponding to the cur-
rent state remains in the bracket. This shrinks the bracket by removing
an interval where it is known at least some points are not in the slice.
A new point is then sampled uniformly from the smaller bracket and

the procedure repeats until a point in the slice is found.

The iterative shrinking of the slice bracket implemented by this pro-
cedure introduces a further level of adaptivity in to the slice sampling
algorithm, meaning that even if only a small proportion of the initial
bracket lies within the slice only relatively few iterations will be needed
still till the bracket is shrunk sufficiently for there to be a high probab-
ility of proposing a point within the bracket. By ensuring the point
corresponding to the current state always remains within the current

bracket, reversibility is maintained.

An alternative to the linear slice sampling procedure just described,
is the elliptical slice sampling method proposed in [183] and described
in Algorithm 5. As suggested by the name, in elliptical slice sampling
rather than proposing points on a line instead an elliptical path in the

target space is defined and new points proposed on this ellipse.
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Elliptical slice sampling is intended for use in target distributions which
can be approximated by a known normal distribution N (g, X). This
distribution might correspond to a normal prior distribution on model
latent variables where the dependence between the latent and observed
variables is only weak and so the posterior remains well approximated
by the prior or a normal approximation fitted directly to the target dis-
tribution using an optimisation based approximate inference scheme

such as those discussed in Appendix C [194].

In each elliptical slice sampling transition an auxiliary vector v is inde-
pendently sampled from the normal distribution NV (g, X). If the target
distribution was exactly described by the normal distribution we could
use this independent draw directly as the new chain state (though ob-
viously in this case there would be no advantage in formulating as an
MCMC method). In reality the target distribution will only approxim-
ately described by N (p, X) and so we wish to instead use this inde-
pendent draw to define a Markov transition operator that will poten-
tially move the state to a point nearly independent of the current state,
but is also able to back off to more conservative proposals closer to the
current chain state. This is achieved by defining an elliptical path in
target space centred at y, passing through the current state x, and the

auxiliary vector v and parameterised by an angular variable 6
x"(0) = (x, —p)cosO+ (v—p)sinf + p. (2.49)

If we generated 6 uniformly from U/ (0, 27r) then the corresponding pro-
posed transition x*(6) would exactly leave the distribution N (y, X)
invariant. As we instead wish to leave the target distribution invari-
ant, a slice sampling algorithm is used to find a 8 which accounts for
the difference between the target distribution and normal approxim-
ation. An auxiliary slice height variable h is sampled uniformly from

U0,p(xn)/N(xp |y X)) and used to define a slice

_ . Plxn)
Sy = {x eX: —N(xn ) < h}. (2.50)

Similar to the linear slice sampling algorithm, a bracket [0}, 6, ] on the
elliptical path is randomly placed around 6 = 0 corresponding to the
current state x,. Unlike the requirement to choose a suitable initial
bracket width in linear slice sampling however, we can define the ini-

tial bracket in elliptical slice sampling to include the entire elliptical
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path ie. 6; = 0, — 27; we only need to randomise the ‘cut-point’ de-
fining the initial end-points of the bracket to ensure reversibility. This
removes the need to choose an initial bracket width (defined by |v| in
our description of the linear slice algorithm) and for any step out pro-
cedure, and so beyond choosing the multivariate normal approximation
elliptical slice sampling does not have any free settings which need to
be tuned.

Once the initial bracket is defined, a directly analogous iterative pro-
cedure to that used in the linear slice sampling algorithm is used to
find a 0 value corresponding to a point in the slice while using rejected
proposed points to shrink the bracket. As with linear slice sampling,
providing the target density is a smooth function and so the intersec-
tion of the elliptical path with the slice is a non-zero measure set, then
the state moved to by the elliptical slice sampling transition operator

will never be equal to the previous state.

2.3.2 Hamiltonian Monte Carlo

The MCMC algorithms discussed so far have required only the ability to
evaluate a (unnormalised) density function for the target distribution
of interest. For distributions defined on real-valued variables the target
density function p will often be differentiable - the gradient % exists
P-almost everywhere. In these cases it is natural to consider using the
gradient to help guide updates to the state. In particular we might hope
to reduce the random-walk behaviour of simpler methods which leads

to a slow diffusive exploration of high-dimensional spaces.

A particularly powerful auxiliary variable MCMC method utilising gradi-
ent information is Hamiltonian Monte Carlo (HMC) [81, 192]. HMC intro-
duces auxiliary momentum variables in to the chain state and then uses
simulated Hamiltonian dynamics trajectories in the augmented space
to generate proposed updates to the momentum-target variables state
pair. The simulated Hamiltonian dynamics exhibit key geometric prop-
erties that make HMC well suited to performing MCMC in complex target
distributions on high-dimensional spaces [37], with the method able to
propose long-range moves with a high probability of acceptance. The
reduced random-walk behaviour means that HMC often scales better
to high-dimensional target distributions than simpler methods such
as random-walk Metropolis and Gibbs sampling [33]. Under the as-

sumption of a target distribution consisting of a product of independ-
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ent factors on D variables, optimally tuned random-walk Metropolis
transitions will take O(D?) computational effort to achieve near inde-
pendence between states of the chain while an optimally tuned HMC

transition can achieve the same with a O(D%) cost [192].

Most implementations of HMC require the target density p is defined
with respect to the Lebesgue measure on a Euclidean space X = RP.
Target densities with bounded support on R” add complication to the
algorithm by requiring checks that proposed updates to the state re-
main within the support of the target distribution and reflecting at the
boundaries of the support [192]. Often however a change of variables
can be performed with a bijective transformation (using Equation 1.22)
that maps to a density with unbounded support, for example taking a

log-transform of a positive variable.

Rather than working directly with the unnormalised target density p
the HMC algorithm is more naturally described in terms of a potential

energy function ¢ : RP — R which is related to p by

B(x) = exp(—(x)) = $(x) = —log p(x). (2.51)

The original target variables x € RP are augmented with a vector of
momentum variables p € RP. The conditional density on the momenta
given the target variables pp|x is defined in terms of a kinetic energy

function 7 : RP x RP — R which is even in its first argument

Ppix(Px) o exp(=z(p | x)). (2.52)

The joint density on the momentum and target variables is then

Pxp (X, p) o exp(=¢(x) — 7(p | x)) = exp(=h(x,p)). (2.53)

The function h(x, p) = ¢(x) + 7(p | x) is termed the Hamiltonian for the
system. A common simplification is for the momenta to be chosen to
be independent of the target variables with a marginal density defined

by a kinetic energy 7 : RP — R

Pp(P) x exp(—7(p)). (2.54)

In this case the Hamiltonian h(x, p) = @¢(x) + 7(p) is separable - there

are no terms jointly dependent on both x and p.
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Commonly a quadratic form z(p) = %pT

M™'p is used for the kinetic
energy where M is a positive definite matrix typically termed the mass
matrix. A quadratic kinetic energy corresponds to assuming normally

distributed momenta with zero-mean and covariance M.

In classical mechanics, the Hamiltonian describes the total energy of a
mechanical system, and can be used to define a canonical Hamiltonian

dynamic via the set of ordinary differential equations (ODEs)

dx on' dp _ on'

== =——. 2.55
dt dp’ de dx (259

We define the flow map corresponding to this dynamic as a family of
mappings ¢, : R? x RP — RP x RP parameterised by a time t € R
such that if (x(t), p(¢)) is the solution to the set of ODEs (2.55) at a time

t given an initial condition x(0) = xo, p(0) = p, then

¥, (x0,po) = (x(2), p(t)). (2.56)

The Hamiltonian flow map has several desirable properties as a pro-
posal generating mechanism for a MCMC method. The Hamiltonian is
exactly conserved along the trajectories generated by the flow map, i.e.
h(x,p) = hoy,(x,p) for all t € IR and for any initial x, p pair. As
Px.p (X, p) o« exp(—h(x,p)) this means Hamiltonian trajectories remain

confined to constant density surfaces in the augmented state space.

The Hamiltonian flow map is also volume preserving - the Jacobian of
the flow map, J,, has determinant one for all ¢ and starting from any
initial (x, p). This volume preservation is a consequence of a stronger
geometric property of the dynamic - that the flow map is symplectic
[152]. Symplecticity of the flow map is implied by the condition

0 0 I

I
Jy, = (2.57)
0

T
J‘Pt
-I 0

being satisfied. The symplectic nature of Hamiltonian dynamics is cent-

ral to efficient scaling of HMC to high-dimensional spaces [37, 192].

A final crucial property of the Hamiltonian flow map is that it exhibits

a time-reversal symmetry under negation of the momenta

(x".p") =¥, (x.p) = (x,—p) = ¥, (x".-p"). (2.58)
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If we define r : RP x RP — RP xRP as a ‘momentum-reversal’
operator such that r(x, p) = (x, —p) then this time-reversal symmetry
means that the composition r o ¢, is an involution. Further as r also
has Jacobian determinant one, then the composition r o , also itself

has a unit Jacobian determinant.

Using the previous result for the Metropolis—Hastings accept ratio for
the special case of a deterministic proposal formed by an involution
(2.39), we have that a proposal generated by applying r o , to the

current state pair (x, p) for any ¢ has an accept probability of one

exp(-horoy,(x,p))
exp(—h(x, p))
= min{l, exp(h(x,p) —horoy,(x,p))} =1 (2.60)

a(x,p) = min{l, Jrop, (X, p)|} (2.59)

This is a result of the conservation of the Hamiltonian under the flow
map (and momentum-reversal operator as 7 is even in the momenta)
and the composed map having unit Jacobian determinant. Therefore
proposals formed by integrating the ODEs forward by some length of
time from the current state and then reversing the momentum would

always be accepted.

On its own the momentum reversal operator r is also an involution
with unit Jacobian determinant which exactly conserves the Hamilto-
nian, and so can also be applied as a ‘proposal’ with probability of ac-
ceptance of one. If we sequentially alternate updates using r o ¢, and r,
each defines a valid Markov transition operator which leaves the (exten-
ded) target invariant, and in sequential composition the momentum re-
versals cancel. We can therefore construct a Markov chain which leaves
the target distribution with density (2.53) invariant by repeatedly gen-
erating new states by integrating the Hamiltonian dynamic forward by
arbitrary lengths of time. Note that though each of r o y, and r are
individually reversible and so respect detailed balance, the sequential

composition is no longer reversible.

There are two major problems with this scheme. Firstly for most ¢ and
T it is not possible to integrate the ODEs (2.55) exactly and so we can-
not evaluate the exact flow map ¢,. Secondly the scheme as proposed
would not be ergodic as the Hamiltonian is conserved by each applica-
tion of the flow map, and so all states generated in this way would be

confined to a constant Hamiltonian manifold in the joint space.
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Figure 2.12.: Visualisation of Hamiltonian Monte Carlo applied to a univariate
target density p(x) = a exp(—ax)(1+ exp(-x)) "% with a = 0.4.
The left axis shows contours (green curves) of the Hamiltonian
function on the augmented (x, p) state space. The orange mark-
ers shows a Hamiltonian trajectory simulated using the leapfrog
method, starting at the square marker and finishing at the trian-
gular marker. The trajectory nearly exactly traces a Hamiltonian
contour due to the approximate energy conservation of the simu-
lated dynamic, with the proposed update (from square to triangu-
lar markers) therefore accepted with high probability. At the end
of the orange trajectory the momentum is randomly resampled,
giving a new initial state (purple square marker) for a second
simulated trajectory shown by the purple markers. The right axis
shows the variation in the Hamiltonian h, potential energy ¢ and
kinetic energy 7 over the two trajectories. In each trajectory the
Hamiltonian is close to constant, with shifts in the potential en-
ergy matched by opposing shifts in the kinetic energy. There is
a step change in the kinetic energy and Hamiltonian when then
momentum is resampled at the end of first trajectory.

The first issue can be resolved by approximately integrating the ODEs.
Importantly by using a symplectic integrator we are able to form ap-
proximate Hamiltonian flow maps which maintain the key volume-
preservation and time-reversibility properties of the exact flow map
dynamic and define, as the name suggests, symplectic maps. There is a
large class of such symplectic integrators [152] however for separable
Hamiltonians an appealingly simple scheme is the Stérmer—Verlet or

leapfrog integrator. If we first define the following component maps

§5,(x.p) = (x + 5tV (p). p), §5,(x.p) = (x.p - 5tV (x)"), (2.61)

then a leapfrog step is defined by the symmetric composition

b5e = Ve 05 0 Pl (2.62)
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Each leapfrog step is time-reversible and volume conserving. The com-
position of L leapfrog steps (ﬁ)stt)L maintains these properties. The al-
ternative symmetric composition %, o1 © P, 0 s o1 also defines a sym-
plectic integrator and is also sometlmes termed the leapfrog method. In
practice when multiple leapfrog steps are composed together the inter-

mediate half time-steps can be combined, for example using (2.62)

~ B A A ~ B ~ B A A ~ B ~ B A A ~ B A A ~ B
(ll’at °Ys; °1P6t) ° (lPar °YPs; Oll’%) WaroWs ©Wsr O Wsr OWar
and so the two different symmetric compositions only differ by whether

initial and final half momentum or position time steps are taken.

Although an approximate flow map will no longer exactly conserve
the Hamiltonian, a key property of symplectic integrators, including
the leapfrog method, is that they correspond to the exact flow map
of a modified Hamiltonian system. Providing the integrator step-size
St is below a stability threshold this modified Hamiltonian &g, will be
close to the original target Hamiltonian: |h(x,p) - ﬁ&(x,p)’ < O(5t%)
where k is the order of the integrator (k = 2 for the leapfrog method)
[152]. As the approximate flow map exactly conserves this modified
Hamiltonian, this means that the change in the Hamiltonian over long
simulated trajectories will remain bounded. If we replace the exact flow
map for the approximate flow map corresponding to L steps of the
leapfrog integrator with step size §t in (2.59) then we have that the
probability of accepting a proposal generated by approximately integ-

rating the ODEs and then negating the momentum is

a(x,p) = min{l, exp(h(x,p) —horo (@?I)L(x,p))}. (2.63)

As the change in Hamiltonian over the trajectory remains bounded, if
the step-size is small enough the probability of acceptance will remain
close to one even for a large number of integrator steps L. This means
simulated Hamiltonian dynamics can be used to form long-range pro-
posed moves which maintain a high probability of acceptance. An ex-
ample of this approximate conservation of the Hamiltonian is shown in
Figure 2.12 which shows a visualisation of trajectories simulated using
the leapfrog method in a system with a one-dimensional target variable
x and the variation in the Hamiltonian, potential and kinetic energies

along these trajectories.
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Algorithm 6 Hamiltonian Monte Carlo.

Input: x, : current target variables state, ¢ : differentiable potential energy
function = —log P, Jt : leapfrog integrator step size, L : number of leapfrog
integration steps, M : mass matrix.

Output: x,. : next chain state with x, ~p = x,41 ~ p.

1 p~N(0,M) > Independently sample new momentum vector.
z pte—p-— —Vg{)(xn) > Initial half momentum step ¢, .
2
5 X" — x, +5tM'p* > P,
« forse{1...L—-1} do
s ptept - otVe(xt) > §ls; 0Pl
2 2
S x* +5tM'p* > P,
7 p* e pt = LVP(x*)T > Final half momentum step %, .
2
s u~ U0, 1)

9 A — exp(qﬁ(xn) + %pM_lp —P(x*) — %p*M_lp*) > Accept probability.
: if u < a then

11: Xpp1 < x* > Proposed move accepted.
2. else
13 Xpt1 & X > Proposed move rejected.

14: return x,4q

When using an approximate flow map as there is now a non-zero prob-
ability of rejection, upon rejecting the momentum will remain at its
current state, before then being negated. The next simulated traject-
ory will therefore backtrack along a previous trajectory after a rejec-
tion. To prevent this backtracking behaviour and resolve the issue that
Markov transitions consisting solely of simulated dynamics proposals
and momentum-reversals would remain confined to a constant mod-
ified Hamiltonian manifold, a further update is introduced in to the
overall HMC transition which changes the momenta while leaving the

target variables fixed.

For the common case of a quadratic kinetic energy 7(p) = %pTM_lp
and so normal marginal distribution on the momenta, the simplest way
to update the momenta is to independently sample a new vector from
N (0, M) at the beginning of each HMC transition. This will both perturb
the initial Hamiltonian of the system and also mean the initial direction
of any simulated trajectory is randomised so that the negation of the
previous momentum upon a rejection does not lead to backtracking. In
this case as the momentum is independently resampled in each trans-
ition there is no need to store the momentum state between successive

transitions and the overall HMC transition will be reversible.
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Algorithm 6 describes the overall HMC transition corresponding to us-
ing a quadratic kinetic energy 7(p) = %pTM ~1p, independent moment-
um resampling and a leapfrog integrator. The integrator step size 5t
and number of steps L together determine the total approximate integ-
ration time T = LJt. Intuitively we want to choose T to minimise the
dependence of the generated proposals on the current point. In gen-
eral however we will not know what this optimal integration time is
and in most problems it will depend on the starting state. Choosing
an appropriate integration time can therefore be challenging, and will
often involve some level of trial and error with pilot runs [192]. Too
small values lead to dynamics proposals which remain close to the cur-
rent state which combined with the independent resampling of the mo-
menta on each transition lead to random-walk like behaviour for the
overall transition, with limited gain from using the HMC transition over

simpler methods such as random-walk Metropolis.

The computational cost of each HMC transition will however scale lin-
early with L and so the integration time, therefore it is desirable to not
increase the integration time beyond the point where there is any gain
in decreased dependence between successive points; further as typic-
ally the simulated trajectories will be quasi-periodic increasing the in-
tegration time can in some cases lead to proposals moving closer to the
original state. The integration time does not need to be the same for
each transition and randomising it by for example uniformly sampling
from an interval can be helpful in some problems to reduce pathological

behaviour due to near periodicity of trajectories [192].

In combination with the integration time an appropriate value must
also be chosen for the integrator step size §¢. As for a fixed integration
time T the step size determines the number integrator steps needed and
so computational cost per transition, we ideally want to use as large a
step size as possible. The step size however also controls how large the
typical change in the Hamiltonian is across a simulated trajectory and
so the accept rate for the proposed updates. As the step size increases
the average accept rate will decrease and beyond some limit typically
the dynamic will become unstable and the Hamiltonian error no longer
remain bounded, leading to very low accept rates for large L. Typically
this stability limit will vary depending on the starting state, so we may
occasionally encounter unstable diverging trajectories even when the

step size is small enough for most trajectories to remain stable.
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Analogously to results for tuning the proposal width for random-walk
Metropolis methods, guidelines have been derived for choosing the in-
tegrator step-size in HMC based on an optimal (in the sense of maxim-
ising some measure of computational efficiency) average accept prob-
ability for the Metropolis step. A target accept rate of 0.65 has been
suggested [26, 192] under idealised assumptions of a high-dimensional
target distribution in which the individual dimensions are independent
and when using the leapfrog integrator. Under more general assump-
tions in [35] an accept rate range of 0.6 to 0.9 was instead recommen-
ded as giving close to optimal performance for symplectic integrators

of order 2 including the leapfrog method.

To help address the challenges of tuning the free integrator step-size
and integration time parameters of the standard HMC algorithm, ad-
aptive variants which automatically tune these parameters have been
proposed. Of particular note is the no U-turn sampler (NUTS) algorithm
[130]. Rather than using a single fixed integration time, NUTS dynamic-
ally varies the length of the simulated trajectories, expanding the tra-
jectories until a termination criterion corresponding intuitively to the
trajectory ‘turning back on itself’ (hence the name) is met and then
using a slice sampling scheme to select a new state from this dynam-
ically generated trajectory. Maintaining reversibility in such a scheme
is non-trivial and NUTS uses an elegant recursive method to do so: full
details are beyond the scope of this review but both [130] and a sub-
sequent review article [33] provide excellent visual explanations of the
algorithm. The dynamic integration time scheme is combined in NUTS
with a stochastic optimisation method for tuning the integrator step-
size to achieve a target acceptance rate, with a vanishing adaptation

rate ensuring convergence of the chains to stationarity [9].

Refinements to NUTS have been suggested including generalised ter-
mination criteria [29, 32] and an extension to use multinomial sampling
of the final state from the generated trajectory instead of slice sampling
[32, 33]. The original NUTS algorithm and these refinements have seen
widespread empirical success through their implementation in the prob-
abilistic programming framework Stan [55] which combines a general
purpose probabilistic model specification language [247] and automatic
differentiation library [54] with efficient implementations of approxim-

ate inference methods including NUTS.
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We have so far neglected to mention how the mass matrix M is chosen.
The simplest choice is to use M = I; this is a reasonable choice when
the target density has a close to isotropic geometry with approximately
equal scaling of each dimension and no strong correlations between
variables. Using a non-identity mass matrix is equivalent to running
HMC with a identity mass matrix in a linearly transformed reparamet-
erisation of the target density [192] and so can be used to account for
non-isotropic target densities by rescaling and decorrelating the vari-
ables of the target distribution. Ideally the mass matrix would be chosen
based on the covariance of the target distribution [33, 192] however in
practice this will typically not be available. One option is to estimate the
target covariance during an initial adaptive phase in the chain which

is used within the NUTS implementation in Stan [55].

In reality for complex target distributions the geometry of the density
will vary across the state space with position-dependent curvature. In
these cases a single constant mass matrix will be ineffective at locally
decorrelating and normalising the scale of the variables corresponding
to the different dimensions of the target distribution. This can degrade
the performance of HMC methods, with no single step size appropriate
in all regions of the state space and typically a trade-off needing to be
made between choosing a small step size based on the scale of the most
constrained directions and choosing a larger step size for efficiency
with the possible result of the simulated dynamic being unable to enter

tightly constrained regions of the target distribution [28].

For a quadratic kinetic energy function r(p) = %pTM_lp, considering
the kinetic energy as a random variable t = 7(p), as p has a multivari-
ate normal marginal distribution, T will have mean D/2 and standard
deviation VD [192]. As the kinetic energy is bounded below by zero and
the Hamiltonian and so sum of kinetic and potential energies approxim-
ately conserved along simulated trajectories, the maximal increase in
the potential energy along a trajectory is approximately upper bounded
by the initial kinetic energy. The potential energy will therefore typ-
ically vary by an amount of order D over simulated trajectories. For
complex target distributions with varying curvature and scales, the po-
tential energy will often vary by much more than D across the typical
set of the distribution and so any single trajectory will typically be only
able to cover a small region in the typical set, with exploration of the

full typical set of the distribution then degrading to a random-walk like
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behaviour as only the momentum resampling steps allows movement

up and down the full potential energy range [28, 33].

A suggested resolution to the issue of varying curvature across the tar-
get density is to use a mass matrix which depends on the target state x.
Riemannian-manifold Hamiltonian Monte Carlo (RMHMC) [107] defines

a non-separable Hamiltonian using a kinetic energy function

w(p1x) = 2" (G(x)) p + 5 loglG ()| (269

corresponding to pp|x(p | x) = N(p|0,G(x)) where G : RP — RDP*P
is a positive-definite matrix function termed the metric. In analogy to
the earlier mentioned equivalence between using a non-identity con-
stant mass matrix and running HMC with an identity mass matrix in a
reparameterised target distribution in terms of a linear transformation
of the original target variables [192], RMHMC can be shown to be equival-
ent to running HMC with an identity mass matrix in a reparameterisa-
tion of the target distribution in terms of a non-linear transformation of
the target variables [195]. This non-linear reparameterisation can loc-
ally transform the target distribution so that the resulting density has

a geometry more amenable to exploration by the HMC dynamic.

Various schemes have been proposed for choosing a metric for a partic-
ular target distribution. In [107] the Fisher—Rao metric [5] is suggested
as it provides a natural description of the Riemannian geometry of para-
metric probability distributions and so is particularly relevant for tar-
get distributions corresponding to the posterior of Bayesian inference
problems for models of IID datasets. The Fisher—Rao metric only has a
closed form solution however for a limited set of distributions. An al-
ternative more generally applicable metric based on a regularisation of
the Hessian of the log target density to ensure positive-definiteness was
suggested in [28]. A ‘geometrically tempered’ metric designed to help

exploration of multimodal distributions was suggested in [195].

The non-separable nature of the Hamiltonian in RMHMC means that the
standard leapfrog method cannot be employed to simulate the result-
ing dynamic, with alternative symplectic integrators such as the gener-
alised leapfrog method [152] required. These integrators involve impli-
cit steps which requires solving a set of non-linear equations on each
iteration. Further evaluation of the inverse of the metric and its log de-

terminant in general have a cost which scales cubically with D, there-
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fore the overall computational cost of simulating the RMHMC dynamic
is much higher per transition than for standard HMC. In some target
distributions the gain in sampling efficiency over standard HMC from
using RMHMC updates can significantly outweigh the increased compu-

tational cost per sample however [28, 107].

2.3.3 Simulated tempering

The final auxiliary variable method we consider, simulated tempering
[164], simulates the dynamics of a thermodynamic system subject to a
varying temperature. Simulated tempering was originally proposed to
improve the exploration of highly-multimodal distributions defined by

undirected models such as the Ising spin model.

A particle of systems with a state described by a vector x € X and a
total energy determined by a function ¢ : X — IR will have an equilib-
rium distribution on the state at a temperature T which has a density
proportional to exp(—f¢(x)) where f = (kT)™! is the inverse temperat-
ure and k is Boltzmann’s constant. If the energy function ¢ is ‘rough’
with multiple local minima, then as the temperature T tends to zero
and f — oo the corresponding peaks in the density function become
increasingly sharp and the mass of the distribution more tightly concen-
trated around these peaks. Conversely as the temperature T increases

and 8 — 0, the density becomes increasingly flat across X.

Simulated annealing [1, 140], is a stochastic optimisation method which
uses this intuition about the properties of thermodynamical systems
to improve the probability of an optimisation routine converging to
a global optima in highly multimodal objectives. The objective func-
tion to be minimised is identified with the energy function ¢ of the
system and the variables being optimised with the state x € X. An
increasing schedule of K inverse temperatures {ﬁk}le is chosen with
0<p <p<--- < Pk < co. Aninitial value for the target variables x
is (randomly) chosen and new values for the target variables are then
computed iteratively for each k € {1...K} by applying a Metropolis—
Hastings transition operator xx ~ T (: | xx—;) which leaves the distri-

bution with density proportional to exp(—fr@(x)) invariant.

The hope is that the transitions at low inverse temperatures will be able
to move freely around the target space due to the relatively flat form

of the density function with lowered barriers between modes. Ideally
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Figure 2.13.: Example of using an inverse temperature to geometrically bridge
between unimodal base and bimodal target densities. Each curve
shows the conditional density pyk corresponding to the joint
target density (2.66) for k = 0 to k = 5 with ¢ = k/5 in this case.

the state will therefore tend to converge towards the modes with the
largest mass. As the inverse temperature is increased the density func-
tion becomes increasingly peaked and the updates will tend to remain
confined to one mode and as f — oo will become concentrated near to
the maximum of this mode. Although there is no guarantee this heur-
istic will find a global optima, empirically it has been found to be useful

in practice in a range of applications.

In simulated tempering, rather than using an inverse temperature to
define an optimisation procedure instead a discrete index controlling
the inverse temperature is introduced as an auxiliary variable in an
MCMC method. The variables x € X on which the target distribution P
is defined are augmented with a discrete index variablek € {0...K}. A
corresponding set of inverse temperature values {f }fzo are specified,
as with simulated annealing these chosen to form an ordered sequence

but in this case over the interval [0, 1] with
0:ﬂ0<ﬂ1<ﬁ2<"‘< x = 1. (265)

A joint density on the target variables x and temperature index k is
then defined as

Pxk(x,k) = é exp(=frd(x) = (1= Br)y (x) + wi). (2.66)
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Algorithm 7 Simulated tempering.

Input: (x,,k,) : current target variables — temperature index state pair, Ty :
transition operator updating only target variables x and leaving distribution
with density in (2.66) invariant, T, : transition operator updating only
temperature index k and leaving distribution with density in (2.66) invariant.

Output: (x,1,k,41) : new target variables — temperature index state pair.

L Xp41 ~ T1(' | Xp, kn)
2: kn+1 ~ TZ( |xn+ls kn)
3 return (X411, kn+1)

The values {wk}’;f:0 are a set of ‘prior’ weights associated with each in-
verse temperature value, and which can be used to help shape the mar-
ginal distribution on the temperature index k. As in the preceding sub-
section the energy function ¢ : X — IR is defined as the negative log-

arithm of the unnormalised target density i.e. ¢(x) = —log p(x).

The function ¢ : X — R defines a corresponding energy function
for a base distribution Q with normalised density gq(x) = exp(—1/(x))
with respect to p. The base distribution is typically chosen to have a
simple unimodal density with mass covering as many of the regions of
high density under the target density in X as possible. When the target
distribution corresponds to the posterior in a Bayesian inference task,
Q is often chosen as the prior distribution on the target variables which
will typically have a simple unimodal form and be much more diffuse
than the posterior. If the state space X consists of a finite set of values,
the base distribution can be chosen to be uniform across X in which

case /(x) is constant and can be omitted from (2.66).

Importantly the conditional distribution Py on the target variables x
for k = 0 (fp = 0) corresponds to the base distribution Q and to the
target distribution P for k = K (fx = 1). We can therefore use the
x components of sampled chain states for which k = K to estimate
expectations with respect to the target distribution P. For intermedi-
ate values of k the conditional distribution geometrically interpolates
between P and Q. Figure 2.13 shows a simple example of this geomet-
ric bridging between a unimodal univariate base density and bimodal

target density for K = 5 inverse temperature values.

In simulated tempering, a Markov chain with an invariant distribution
corresponding to (2.66) is constructed by alternating updates of the tar-
get variables x given the current value of temperature index k, with

updates of the temperature index k given the current value of the tar-

93



94

| APPROXIMATE INFERENCE

get variables x as summarised in Algorithm 7. For the transition oper-
ator Ty updating the target variables, any of the previously discussed
methods such as random-walk Metropolis, slice sampling or HMC can
be used. In the case of Metropolis—Hastings based updates, it may be
desirable to adjust the proposal generating mechanism to depend on
the current temperature index k as for example we might generally
expect for k corresponding to lower inverse temperatures fx and so
conditional densities py|k closer to the base density that larger moves
can be made while maintaining reasonable accept rates; as k remains

fixed this can validly be done without breaking reversibility.

In the original description of the simulated tempering algorithm in
[164], the transitions to the index variable k given fixed values of the
target variables x were performed using a random-walk Metropolis op-
erator for T, which proposes to randomly increment or decrement k
by one (except at the end-points k = 0 and k = K where it always pro-
posed to increment and decrement respectively). For large K this can
lead to slow mixing up and down the inverse temperature scale - if the
marginal density py is uniform we would expect O(K?) updates would
be needed to traverse the full inverse temperature range. An alternative
is to use a Gibbs sampling step with the conditional distribution Py x

here being a multinomial distribution with density

pix(k | x) = exp(Br (¥ (x) — (x)) + w)
x &0 exp(Br (P (x) — p(x)) + wy)

(2.67)

which we can tractably generate independent samples from. For arbit-
rary {f, wk}Ik(:0 this will require explicit summation over K + 1 values
to calculate the normalising constant and so the cost of generating an

independent index will scale linearly with K.

For By = % and wi = afy Vk € {0...K} for some « € IR, the normal-

ising constant in (2.67) takes the form of a geometric series

K k
3 eXp(wx) ~ g0+ a) L, SR g
k=

. K 1 - exp(LEgb)ee)

The conditional distribution Pyx in this case has the form of a geomet-
ric distribution with parameter exp(%) truncatedto {0 ... K}

which we can generate samples at a cost independent of K.
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The marginal distribution Py on the index variable k has density

exp(wi)
C

pr(k) = /X€XP(—ﬁk¢(x)—(1—ﬁk)¢(x))u(dx)- (2.69)

As [y exp(—/(x)) p(dx) = 1and [, exp(—¢$(x)) pu(dx) = Z we have

exp(wo)
C

exp(wx)Z

pk(0) = C

and pk(K) = (2.70)

If Z is much more than one and wy = 0 for all k € {0...K} then we
would have pi(K) > pi(0) and a simulated tempering chain will tend
to spend many more iterations with k = K than k = 0. This will give
a large number of samples with which to estimate expectations with
respect to P however it will also limit the gain from using simulated
tempering over running a Markov chain in the original non-augmented
target variable space, as the chain will rarely visit the lower inverse tem-
peratures which aid exploration. Conversely if Z is much less than one,
we have pi(K) < pk(0). In this case the chain will tend to remain at k
values corresponding to low inverse temperatures and so few samples

are available for computing expectations with respect to P.

If we could set wy — wg = log Z we would have py(K) = pk(0) how-
ever for the target distributions of interest we will generally not be
able to evaluate Z and a similar result holds for the normalising con-
stants of the conditional distributions Py, corresponding to intermedi-
ate inverse temperatures and so the appropriate values for {wy }Ik:l. In
general therefore it will be difficult to identify reasonable values to set
the weights {wk}fzo to a-priori. This is typically solved in practice by
using an iterative scheme [131, 164]: an initial pilot chain is run with
wy = 0 Yk to estimate the marginal density py by constructing a histo-
gram of counts of samples for each k and then this histogram used to set

the weights so as to approximately flatten the marginal density.

The relationship between the marginal density pyx and Z although pres-
enting challenges in terms of choosing the weights {wy }I]fzo also how-
ever demonstrates that simulated tempering chains can be used to es-

timate Z. In particular we have that

pk (K)
pK(0)

Z = exp(wy — wg) (2.71)
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Given the sampled states {x(™, k(™ }V_ of a simulated tempering chain,
one way to form a consistent estimate of Z is therefore to compute the

ratio of the counts of samples with k = K to those with k = 0,

Zg:l 1 {K} (k(n))

SN Ty (k) (272)

Z = lim exp(wy — wg)

N—oo
This estimate will typically have a high variance however as it uses
information only from the subset of sampled states with k = 0 or k = K.
Expanding py as a marginalisation integral of the joint density (2.66) we

can reformulate the identity in (2.71) as

Jx Prix(K | x) px(x) pr(dox)
Jx Pix (0] x) px(x) p(dx)

Z = exp(wo — wg) (2.73)
This is an example of what is sometimes termed Rao-Blackwellisation
[56] and was used in 53] to suggest a Rao-Blackwellised estimator for
the normalising constant Z from the samples {x(*), k(s)}f:1 of a simu-

lated tempering chain

SN ik (K 1 x(™)
21,:/;1 Pk|x(0 | x(n))

Z = Alllinw exp(wy — wig) (2.74)
This estimator uses all of the sampled chain states and will typically be
lower variance than the count-based estimator (2.72). Importantly this
estimator can still give reasonable estimates for Z when there are no
sampled states for which k = 0 (or k = K) unlike the count-based es-
timator. This is particularly important when using an iterative scheme
to choose the weights {wy }Ik(:0 asif Z > 1or Z <« 1 an initial short
pilot chain will typically remain confined to one end of the inverse tem-
perature scale for all iterations, giving limited count-based information

with which to update weights for subsequent iterations.

2.4 DISCUSSION

The sampling approaches to approximate inference described in this
chapter allow tractable estimation of the integrals involved in many in-
ference problems. In cases where we can generate independent samples
from the target distribution, the % scaling of the variance of Monte
Carlo estimates of expectations with the number of samples N allows

computation of estimates with sufficient accuracy for most practical
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purposes without the exponential blow-up in computation of quadrat-

ure methods with dimensionality.

Generating independent samples from arbitrary distributions on high-
dimensional spaces is often infeasible however. Transform sampling
methods offer a scalable approach for only a few special cases such as
the multivariate normal distribution. Rejection sampling is more gener-
ally applicable however the usually exponential decrease in the propor-
tion of accepted samples with dimension means that it is only useful in
relatively low-dimensional distributions. Simple importance sampling
schemes similarly scale poorly with dimensionality, with mismatch bet-
ween the proposal and target distribution in high-dimensions meaning

the variance of the resulting estimators is impractically high.

Although these Monte Carlo methods are not directly applicable to
performing inference in the complex probabilistic models of interest,
they are still useful building blocks and will appear as components of
the methods we will discuss in the rest of this thesis. In Chapter 3 we
will discuss MCMC methods which use importance sampling estimators
of the target density to construct the chain. The simulator models dis-
cussed in Chapter 4 can be considered an extension of the idea of trans-
form sampling, with a complex series of deterministic operations trans-
forming inputs from a pseudo-random number generator to simulated
values for the variables in a probabilistic model. One of the standard
approaches for performing approximate inference in simulator models
is based on rejection sampling, and our discussion of the poor scaling
of rejection sampling with dimensionality will be relevant when con-

sidering the limitations of these methods.

Markov chain Monte Carlo methods offer a more scalable approach to
inference in complex probabilistic models and are the main focus of
the work discussed in this thesis. The local perturbative updates typ-
ically employed in MCMC methods avoid the curse of dimensionality
effects which lead to the exponential blow up in the computational
effort required by methods such as rejection sampling as the dimen-
sion increases. MCMC methods such as random-walk Metropolis and
Gibbs sampling typically require minimal implementation effort and

have successfully applied in a wide range of settings.

For target distributions with more complex geometries however such

as due to the non-linear relationships between variables often present
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in hierarchical models or the multimodal distributions typically arising
from inference in undirected models, MCMC methods such as random-
walk Metropolis and Gibbs sampling can exhibit pathological behaviour
that means impractically long chains are needed for MCMC estimators
to give useful results. In these cases methods which exploit more in-
formation about the geometry of the distribution in each update can

offer significant improvements in efficiency and robustness.

The introduction of auxiliary variables in to the chain state has proved
a particularly successful approach for proposing MCMC methods which
can accelerate the exploration of complex target distributions. We con-
cluded this chapter by reviewing three auxiliary variable MCMC meth-
ods that will be central to the contributions made in this thesis: slice

sampling, Hamiltonian Monte Carlo and simulated tempering.

Slice-sampling offers a very generally applicable approach for construct-
ing Markov chains which are able to adapt the scale of proposed moves
to the local geometry of the target distribution. The information con-
trolling this adaptation comes from allowing multiple evaluations of
the target density per update in slice sampling compared to for ex-
ample the single target density evaluation per iteration of random-walk
Metropolis methods. The overhead from these multiple density eval-
uations will mean that for target distribution in which the geometry
of the density does not vary significantly across the space, well-tuned
random-walk Metropolis updates will often be able to outperform slice
sampling transition operators in terms of the computational cost per ef-
fective independent sample. However the ease of use of slice sampling
methods, with typically minimal user tuning required of the free al-
gorithmic parameters, and increased robustness to distributions with
more complex geometries, are in our opinion often more important

than a potential improvement in peak efficiency.

Hamiltonian Monte Carlo methods put a requirement of differentiab-
ility on the target density and so are not as widely applicable as slice
sampling approaches. When available however gradient information
can be a significant help in guiding the exploration of the target space
by a MCMC dynamic. Using reverse-mode automatic differentiation (as
described in Appendix B) code for evaluating the exact gradients of a
density function can be automatically generated given just the defin-
ition of the original density function and the resulting gradient func-

tion evaluated at a cost which has only a constant factor overhead over
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the cost of the original density function evaluations. When optimally
tuned HMC methods can overcome the random-walk behaviour inher-
ent to simpler MCMC methods and so offer significantly improved per-
formance in complex high-dimensional target distributions. Although
implementation of HMC algorithms is more complex than approaches
such as Gibbs sampling and random-walk Metropolis and the tuning of
the algorithm parameters can be vital for good performance, the avail-
ability of efficient, adaptive implementations in probabilistic program-
ming frameworks such as Stan [55] and PyMC3 [236] has supported the

use of HMC in a wide range of inference problems.

Simulated tempering offers a complementary approach to the improved
local exploration afforded by slice sampling and HMC methods by poten-
tially improving the global exploration of challenging multimodal tar-
get distributions. As the updates to the target variables at a fixed inverse
temperature can be performed using any valid Markov transition oper-
ator applicable to the original target distribution, both slice sampling
and HMC transition operators can be used within a simulated temper-
ing chain and both potentially offer an improved ability to adapt to
the varying geometry of the density on the target variables at different
inverse temperatures compared to simpler methods such as random-
walk Metropolis. In addition to the possible improved exploration of
multimodal targets, the ability to use simulated tempering chains to
estimate an unknown normalising constant of the target density, of-
ten corresponding to a model evidence term, offers a further distinct

advantage over standard MCMC methods.

Although simulated tempering can provide several important benefits,
use of the algorithm in statistical applications seems relatively rare in
practice. This can perhaps be partially attributed to the need to tune
the values of the free inverse temperature S and prior weight wy para-
meters introduced in the algorithm, with any improvement in explor-
ation of the target distribution strongly dependent on the simulated
tempering chain being able to move up and down the inverse temperat-
ure range. Further the lack of standard implementations in frameworks
such as Stan and PyMCs3, and relative wastefulness of the standard ap-
proach of estimating expectations with respect to the target distribu-
tion by averaging over only sampled states corresponding to an inverse
temperature of fx = 1, add further discouragements to widespread use

of the algorithm.
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2.5 OUTLINE OF CONTRIBUTIONS

Having now completed our reviews of both the inference tasks and
MCMC methods underlying the work in this thesis, we are now in a po-

sition to outline the contributions made in the rest of the thesis.

Inference in hierarchical models is often a challenging task for MCMC
methods due to the strong dependencies between the global and local
latent variables and resulting complex geometry of the target density
on the model variables. We will sometimes only be directly interested
in inferring plausible values for the global latent variables in the model
but will typically be unable to analytically integrate out the local latent
variables. The pseudo-marginal framework shows how an unbiased es-
timator of the marginal density on the global latent variables can be
used to construct a Metropolis—Hastings method for sampling values
of the global latent variables. Pseudo-marginal Metropolis—Hastings
methods however suffer from ‘sticking’ pathologies where chains reject

updates over long series of iterations and are challenging to tune.

In Chapter 3 we demonstrate that by including the auxiliary variables
used in the density estimator in the chain state alternative transition
operators can be used in a pseudo-marginal setting, including adapt-
ive rejection-free methods like slice-sampling. The resulting auxiliary
pseudo-marginal methods are able to prevent the sticking artifacts com-
mon to existing pseudo-marginal methods, are easier to tune and in

some cases give significant improvements in sampling efficiency.

We described simulator models as a challenging setting for approx-
imate inference methods in Chapter 1 due to the lack of an explicit
target density on the model variables. Approximate Bayesian compu-
tation (ABC) is a class of methods for performing inference in such
models by conditioning on simulated observations being ‘close’ rather
than exactly equal to the observed data. ABC methods based on both re-
jection sampling and pseudo-marginal Metropolis—Hastings have been
proposed, but both suffer from curse of dimensionality effects that mean
further approximation is typically required by reducing the simulated

observations and data to lower-dimensional summary statistics.

In Chapter 4 we show that any generative model can be considered as
a deterministic transformation of a vector of auxiliary variables from a

known distribution. We use this intuition to demonstrate how MCMC
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methods such as slice sampling and HMC can be applied within an
ABC setting, the improved performance of these methods compared to
approaches based on pseudo-marginal Metropolis—Hastings meaning
that in some cases ABC inference can be performed without the need
for summary statistics. For a restricted class of differentiable generat-
ive models we derive an expression for conditional expectations un-
der the model in terms of an integral against a distribution defined
on an implicitly-defined manifold. We use this to propose a novel con-
strained HMC method for performing approximate inference in differ-
entiable generative models without an explicit density function on the
model variables. This method allows computationally tractable infer-
ence when conditioning high-dimensional simulated observations be-

ing arbitrarily close to observed data.

Simulated tempering provides an approach for tackling two of the key
challenges identified in Chapter 1: performing inference in multimodal
distributions such as those defined by undirected models like the Boltz-
mann machine; estimating the model evidence normalising constant
terms required for model comparison. However as noted above simu-
lated tempering is used relatively rarely in practice. In the above dis-
cussion we suggested factors which may have discouraged more wide-
spread adoption of the algorithm: the difficulty in choosing the set of
inverse temperature and prior weight values to use, the relative ineffi-
ciency of using only a small proportion of the samples in a chain to
compute estimates and the lack of support for simulated tempering

methods in existing inference packages.

In Chapter 5 we suggest approaches to overcome these issues. We pro-
pose using a continuous auxiliary variable to control the inverse tem-
perature rather than a discrete index. This sidesteps the need to choose
a set of inverse temperature values and allows the auxiliary variable to
be jointly updated with the target variables in a HMC update making
it straightforward to use tempering within existing HMC-based infer-
ence packages. Further we show how all of the samples in a tempered
chain can be used to estimate expectations with respect to the target
distribution. Finally we demonstrate that variational inference methods
provide a natural approach for choosing the base distribution bridged
to during tempering and show that cheap biased approximations to the
normalising constant of the target density can be exploited to help flat-

ten the marginal density on the inverse temperature.
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PSEUDO-MARGINAL METHODS

The MCMC methods considered in Chapter 2 provide a widely applic-
able set of tools for performing inference in probabilistic models where
we can evaluate a, potentially unnormalised, density function for the
target distribution of interest. In some models we may not be able to
directly evaluate such a function however but instead have access to an
unbiased estimator of the target density. The pseudo-marginal frame-

work [8] allows MCMC methods to be extended to such problems.

The typical setting for pseudo-marginal methods is that a distribution
on an extended set of variables is constructed which has the target dis-
tribution as a marginal distribution. Values of a density function for the
target distribution are then estimated by using a Monte Carlo method
such as importance sampling to approximately marginalise out the ad-
ditional variables. The variables which are marginalised out may cor-
respond to latent variables specified in the model but that are not of
direct interest for the inference task or variables introduced solely for
computational reasons. In both cases it will usually be possible to spe-
cify a Markov transition operator which leaves the distribution on the
extended set of variables invariant, with such schemes often being de-
scribed as data augmentation [245, 257] or auxiliary variable [83, 129]
methods. Here we will refer to any variables which are marginalised
over as auxiliary variables and the variables of interest we wish to in-

fer plausible values for as the target variables.

The density of the joint distribution on auxiliary and target variables
will often have a complex geometry with strong dependencies between
the variables and in some cases may be multimodal. This can lead to
poor exploration of the extended space by simple MCMC schemes such
as random-walk Metropolis—Hastings and Gibbs sampling [8]. The mo-
tivation for pseudo-marginal methods is that in some cases the density
of the marginal distribution on the target variables will have a sim-
pler geometry than the density of the joint distribution on the exten-
ded space and therefore be more amenable to exploration by standard

MCMC methods.

103



104

—_

| PSEUDO-MARGINAL METHODS

Although in general we cannot analytically integrate out the auxili-
ary variables, the pseudo-marginal framework shows how an unbiased
estimator of the marginal density can be used within a Metropolis—
Hastings update while maintaining the asymptotic exactness of stand-
ard MCMC methods. Intuitively the lower the variance of the density
estimator the closer the behaviour of the algorithm to the case where
the auxiliary variables are analytically marginalised out. We can con-
trol the variance of the estimator both by varying the number of aux-
iliary variable samples used in the Monte Carlo estimate and by using

variance reduction methods to increase the estimator efficiency.

By posing the problem of specifying an MCMC algorithm in terms of
designing an efficient unbiased estimator of the density of interest, the
large literature on methods for constructing low-variance unbiased es-
timators can be exploited. For example comparatively cheap but biased
optimisation-based inference approaches such as Laplace’s method (see
Appendix C) can be combined with an importance sampling ‘debias-
ing’ step to produce an unbiased estimator which can then be used
in a pseudo-marginal MCMC update. This provides a way of exploit-
ing cheap but biased approximate inference methods within a MCMC

method which still gives guarantees of asymptotically exact results.

The pseudo-marginal framework has been applied to a wide range of
probabilistic models where inference might otherwise be intractable.
However the standard pseudo-marginal method, which is based on a
Metropolis—Hastings transition operator, is susceptible to ‘sticking’ be-
haviour where proposed moves are repeatedly rejected for many iter-
ations [8, 239]. The method can also be difficult to tune as it breaks
some of the assumptions underlying standard heuristics for adapting

the parameters of Metropolis-Hastings methods.

In this chapter we will discuss an alternative formulation of the pseudo-
marginal framework which bridges between the approach of directly
specifying a Markov transition operator on the extended state space
which includes the auxiliary variables and the pseudo-marginal method
where the auxiliary variables are approximately marginalised out. This
auxiliary pseudo-marginal framework still allows the intuitive design
of pseudo-marginal algorithms in terms of identifying low-variance un-

biased estimators, while overcoming some of the issues of the pseudo-

We use ‘efficient’ in a general sense here rather than the notion of a minimum-variance
unbiased estimator satisfying the Cramér-Rao lower bound [67, 220].
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marginal Metropolis—Hastings method. In particular it shows how more
flexible adaptive MCMC algorithms such as slice-sampling can be used
within the pseudo-marginal setting, which can improve the robustness
and ease of application of the approach by minimising the amount of

user-tuning of free parameters required.

The work summarised in this chapter is based on a collaboration with

Tain Murray which resulted in the published conference paper

e Pseudo-marginal slice sampling. Iain Murray and Matthew M.
Graham. The Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, JMLR W&CP 51:911-919, 2016.

Tain Murray was the main contributor of the ideas proposed in that pub-
lication and responsible for the ‘doubly-intractable’ Gaussian and Ising
model experiments in Sections 5.1 and 5.2 of the paper. We discussed
the presentation and details of the work together. My individual con-
tribution was implementing and analysing the Gaussian process classi-
fication experiments summarised in Section 5.3 of that work, an exten-
ded version of which is reproduced in Section 3.6.2 of this chapter. The
Gaussian latent variable model experiments discussed in Section 3.6.1
were directly inspired by the experiments in Section 5.1 of the above
paper, but we use a different latent variable model formulation for the
model here and conduct additional empirical studies of the effect of the
variance of the estimator on the relative performance of the algorithms
and the sensitivity of the performance of the pseudo-marginal slice
sampling algorithms to their free parameters. The text and figures in
this chapter are all my own work, though inevitably some of the discus-

sion and analysis is similar to sections of the above publication.

3.1 PROBLEM DEFINITION

As in the previous chapter our goal is to be able to compute estimates
of expectations with respect to a target distribution of interest, that is

integrals of the form

F= /X F(x) P(dx) = /X £(x) plx) pu(dx) (31)

where f : X — R is an arbitrary Lebesgue integrable function and P is

a probability distribution on a space X with density p = ?1_5' We assume
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SOSTOSNO

Figure 3.1.: Hierarchical model factor graph.

as previously that the density p may have an intractable normalising
constant C that we cannot evaluate i.e. p(x) = p(x)/C. We make the
further assumption here that we cannot directly evaluate p either but
only compute an unbiased, non-negative estimate of it. More explicitly
we assume we can generate values of a non-negative random variable

p from a regular conditional distribution Py x such that

=
a3
I
i}
>
X
I

x] :/ PPpx(dplx) VxeX. (3.2)
0

Note that we only require that we can generate p values for a given x,
not that we can evaluate a density for P|x. For concreteness throughout
the rest of this chapter we will assume that the target variables take val-
ues in a real-valued space X = RP and that any density on these vari-

ables is defined with respect to the Lebesgue measure p = A”.

3.1.1  Example: hierarchical latent variable models

The application of pseudo-marginal methods we focus on is inference
in hierarchical probabilistic models where the unobserved variables are
split into global latent variables we are interested in inferring and local
per datapoint latent variables that we wish to marginalise over the val-
ues of, as introduced in Section 1.3.1 in Chapter 1. For notational simpli-
city we here assume all observed variables are concatenated in a single
vector y and likewise all associated local latent variables in a vector z.
The global latent variables, i.e. the target variables for inference, are
then x. A factor graph representing the factorisation across the model

variables is shown in Figure 3.1.

The target distribution P is then the posterior distribution Py, given
fixed observed values y and the unnormalised target density is chosen
as the joint density p(x) = pxy(x,y). We can express p as a marginal
of the joint density pyy,,, which assuming the latent variables z being
marginalised over are real-valued and have a density with respect to

the Lebesgue measure can be written

BX) = pry(x.y) = /Z Py, 31,2) dz. (33)
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Generally this integral will not have an analytic solution. We can how-
ever form an unbiased estimate of (3.3) using importance sampling. We
define a importance distribution Q which we can generate independent
samples from and with a known density ¢ which in general may depend
on the values of the target variables x and observations y and which
the target distribution P must be absolutely continuous with respect to.
If {z(" }2]:1 are a set of independent variables distributed according to

Q then we can define a unbiased density estimator p as

N

x,y,z™
1 Z tly(:(”) Iyx y)) = E[pIx=x]=p(x). (34

The variance V[p] is proportional to 1 and so to decrease the estimator
variance we can increase the number of importance samples used, how-
ever this comes with the trade-off of an increased computational cost
of each density estimate. The estimator variance will also be depend-
ent on the importance distribution used. The optimal choice in terms of
minimising variance would be the conditional distribution P,x y. Under

this choice the density ‘estimate’ takes the form

N Xy’
Z zlxy Z( )|x y) pry ( ) (3.5)

and so is equal to the unnormalised target density independent of the
sampled z(™ values with zero variance. In reality however we will not
be able to evaluate the density of P,|xy nor sample from it as this is

equivalent to being able to analytically solve the integral in (3.3).

The conditional distribution P,|x will often be tractable to sample from
and to evaluate the density of and so is a possible choice for the im-
portance distribution. Typically however P,|x will be much less concen-
trated than P,y y. This will mean samples from P, |, will tend to fall in
low density regions of P,|x, with only occasionally sampled values be-
ing in regions with high density under P,x y leading to a high variance
estimator, with the problem becoming more severe as the dimension of
z increases. This can mean a large number of importance samples are

needed to achieve an estimator with a reasonable variance.

An alternative is to fit an approximation to P,xy to use as the import-
ance distribution using for example one of the optimisation-based ap-

proximate inference approaches discussed in Appendix C. For example

107



108

| PSEUDO-MARGINAL METHODS

we could use Laplace’s method to fit a multivariate normal approxima-
tion p,ixy(z]x,y) = N(z | My Zx,y) and use this as the importance
distribution. As p,|xy depends on x this involves fitting an approxima-
tion for each x value we wish to evaluate the density at. Although com-
putationally costly the significant variance reduction brought by this

approach can make this overhead worthwhile in practice [87].

Inference in hierarchical latent variable models using an importance
sampling estimator for the marginal density is just one setting in which
pseudo-marginal methods are applied. Other applications of the frame-
work have included inference methods for dynamical state space mod-
els using a particle filter estimator [78, 112] for the marginal density of
the observed state sequence given the model parameters [7, 61, 209],
parameter inference in ‘doubly-intractable’ distributions [184] where
an intractable normaliser depends on the variables of interest using
density estimators based on exact sampling methods [178, 181, 216] and
random series truncation [160] and approximate inference in simulator
models where the density on the simulator outputs is only implicitly
defined [165].

In the discussion and experiments in this chapter we will concentrate
on latent variable models and importance sampling density estimators
of the form described in this section. Examples of applying the methods
discussed here to inference in a doubly intractable distribution were
discussed in the associated conference paper [185]. Although particle
filtering based methods are a major use case of the pseudo-marginal
framework, the associated models and estimators tend to be more com-
plex and we have chosen to avoid further expanding the theoretical
background material in this thesis by concentrating on simpler cases
here. The use of pseudo-marginal MCMC methods to perform inference
in simulator models will be a major topic of the next chapter which
specifically considers inference methods applicable in this setting so

we will delay discussion of models of this form till then.

3.2 PSEUDO-MARGINAL METROPOLIS—HASTINGS

The pseudo-marginal Metropolis—Hastings method is summarised in
Algorithm 8. The term pseudo-marginal was proposed by Andrieu and
Roberts in [8] as part of an extensive theoretical analysis of the pseudo-

marginal framework. Andrieu and Roberts cite Beaumont [18] as the



3.2 PSEUDO-MARGINAL METROPOLIS—HASTINGS |

Algorithm 8 Pseudo-marginal Metropolis—Hastings.

Input: (x,,p,) : current target variables — density estimate state pair, Ppjy :
density estimate conditional distribution, r : proposal density for updates
to target variables.

Output: (x,41, Pn+1) : new target variables — density estimate state pair.

L x* ~r(-|xp) > Propose new values for target variables.
2 p* ~ Ppx (- | x¥) > Estimate density at proposed x*.
3 u~U(-0,1)

. r(xn |x*)ﬁ*
¢ ifu< T b then

5t (xn+1, Pns1) < (X%, %) > Accept proposal.
o else
7 (Xn+1 Prnr1) < (Xn, Pn) > Reject proposal.

s return (X1, Pri1)

original source of the algorithm. Special cases of the algorithm have
also been independently proposed, for example in the statistical physics
literature by Kennedy and Kuti [137] and a MCMC method for doubly
intractable distributions by Moller et al. [178].

The algorithm takes an intuitive form, with a very similar structure to
the standard Metropolis—Hastings method (Algorithm 2) except for the
ratio of densities in the accept probability calculation being replaced
with a ratio of the density estimates. Importantly the stochastic dens-
ity estimates are maintained as part of the chain state: if we reject a
proposed update on the next iteration of the algorithm we reuse the
same density estimate for the current state as in the previous iteration.
This is required for the correctness of the algorithm, but also helps
explain the sticking behaviour sometimes encountered with pseudo-
marginal Metropolis—Hastings chains. If the density estimator distribu-
tion is heavy-tailed occasionally a estimate p, will be sampled for the
current target state x, which is much higher than the expected value
Pp(xy). Assuming for simplicity a symmetric proposal density r is used
such that the accept probability ratio in Algorithm 8 reduces to p*/py,
for subsequent proposed (x*, §*) pairs the p* values will typically be
much smaller than the outlier f,, value and so the accept probability
low. This can cause a long sequence of proposed moves being rejected
until a move is proposed to an x* where the density is similar to p, or

another atypically high density estimate is proposed [8, 87, 239].

The efficiency of the pseudo-marginal Metropolis-Hastings update de-
pends on how noisy the density estimates are and so the choice of the

number of Monte Carlo samples N in the density estimate, for example
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the number of importance samples in (3.4). As N increases, the variance
decreases and the algorithm becomes increasingly similar to perform-
ing standard Metropolis—Hastings updates under the (marginal) target
distribution. Generally a chain will therefore mix better for larger N,
with fewer sticking events. Typically however the computational cost
of density estimate and so Metropolis—Hastings updates also increases
with N and so there is a trade off between this improved mixing and
increased per-update cost. Several theoretical studies have suggested
guidelines for how to tune the parameters of the algorithm to optimise

overall efficiency.

For Monte Carlo estimators formed as an average of unbiased estimat-
ors (such as the importance sampling estimator discussed above) and
under an assumption that the computational cost of each density es-
timate scales linearly with the number of Monte Carlo samples N, it
has been shown [47, 238] that it is close to optimal to choose N = 1.
Although the variance reduction in the density estimates for larger N
generally gives higher acceptance rates and improved mixing, the gain
in the number effective samples in this case is usually smaller than the

increased computational cost per update.

As noted in [238] in many practical settings cases the assumption of a
linear increase in cost with the number of importance samples N will
not be valid, particularly for small N. For example most modern central
processing units (CPUs) have some degree of parallel compute capability
through multiple cores so (assuming the parallelism can be exploited)
there will usually be a non-linear increase in cost until all cores are
at full utilisation: a rough guideline in this case is to use one sample
per core. Another situation in which the linear cost assumption may
not hold is when there is a high fixed computational overhead in each
density estimate independent of the number of samples. For example
if an importance distribution is used which is dependent on the target
variables there may be computational operations such as matrix decom-
positions that can be performed once and then their cost amortised over

generation of multiple importance samples.

Particle filtering estimators do not take the form of a simple Monte
Carlo average of independent unbiased estimates but are instead are
formed as a product of (dependent) Monte Carlo estimates [238]. The
result of [238] that using N = 1 is close to optimal (with N now the

number of particles) is therefore not applicable in this case.
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Under an alternative simplifying assumption relevant to the particle fil-
tering setting that the noise in the logarithm of the density estimator
is normally distributed and independent of the value of the target vari-
ables x and that the computational cost of each density estimate scales
linearly with N, it is argued in [79] that N should be chosen so as to
make the standard deviation of the logarithm of the density estimator
approximately equal to 1.2. In [239] a more specific case is considered of
pseudo-marginal Metropolis—Hastings methods using a isotropic Gaus-
sian random-walk Metropolis proposal r(x" |x) = N (x’ | x, /121) and
the same assumptions as [79] made of additive normal noise in the log-
arithm of the density estimator which is independent of x and a compu-
tational cost for each density estimate which scales linearly with N. It
is shown that for target distributions on a D dimensional space which
obey certain regularity assumptions as D — oo that computational ef-
ficiency is maximised for a choice of A and N which gives an average
accept rate of approximately 0.07 and a noise standard deviation for

the logarithm of the density estimator of approximately 1.8.

3.3 REPARAMETERISING THE ESTIMATOR

As a first step in considering how to apply alternative transition oper-
ators to pseudo-marginal inference problems, we define a reparamet-
erisation of the density estimator in terms of a deterministic function
of the auxiliary random variables used in computing the estimate. An
equivalent reparameterisation has also been used in other work analys-

ing the pseudo-marginal framework, for example [79].

In general the computation of a density estimate will involve sampling
values from known distributions using a pseudo-random number gen-
erator and then applying a series of deterministic operations to these
auxiliary random variables. Under the simplifying assumption that the
estimator uses a fixed number of auxiliary random variables, we can
therefore define a non-negative deterministic function ¢ : X X U —
[0, 00) and a distribution R with known density p = g—lj with respect
to a reference measure v such that if u is an independent sample from
R, then p = &(x,u) is an independent sample from Pgx(- | x). Here R
represents the known distribution of the auxiliary variables and ¢ the

operations performed by the remaining estimator code given values for

m
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the target and auxiliary variables. We can use this to reparameterise
(3.2) as

p(x) = /Ue(x,u)R(du) = /Ug(x, u) p(u)v(du) VxeX.  (3.6)

For example considering the importance-sampling density estimator
for a hierarchical latent variable model defined in (3.4), if we assume
the importance distribution is chosen to be a multivariate normal with
density N(yx’y,zx,y) then defining u = [u“); ;u(”)] as the con-
catenated vector of standard normal variables used to generate the im-

portance distribution samples, we have p(u) = N (u0,I) and

]_ i px,y,z(x: y: Lx,yu(n) + ”x,y)

e(x,u) = — , 3.7)
= N(Lx,yu(”) + ey |[.lx’y,2x,y)

N

where Ly 4 is the lower triangular Cholesky factor of X, ;.

Rather than defining the chain state in the pseudo-marginal Metropolis—
Hastings update as the target state — density estimate pair (x, f), we
can instead replace the density estimate p with the auxiliary random
variables u drawn from R used to compute the estimate. As p is a de-
terministic function of x and u these two parameterisations are equi-
valent. The implementation in Algorithm 8 can be considered a prac-
tically motivated variant that avoids the u values needing to be stored
in memory and in fact means they do not need to be explicitly defined

in the algorithm at all.

While the formulation of the update in Algorithm 8 is the more useful
for implementation purposes, showing the correctness of the update
is simpler when considering the chain state as (x,u). We will briefly
go through this derivation now as it provides some useful insights in
to the pseudo-marginal Metropolis—Hastings algorithm that will help

motivate our alternative proposed approaches.

From (3.6) we know that a distribution on X X U with density
1
m(x,u) = C e(x,u) p(u) (3.8)

will have the target distribution on X as its marginal distribution. Show-

ing that the transition operator defined by Algorithm 8 leaves a distribu-
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tion with density corresponding to (3.8) invariant is therefore sufficient

for ensuring the correctness of the algorithm.

The transition operator corresponding to Algorithm 8 has a density
toxhu' | x,u) =r(x’| x)p)a(x’,u’| x,u) + 5(x —x") 5(u —u’)
(1 —/ / r(x’| x)p)a(x’u’| x,u) y(dx)v(du)),
uJx

with the accept probability « being defined here as

alx’,u’ | x,u) = min{l, (3.9)

r(x|x")e(x’, u’)}

r(x’ | x)e(x,u)

As in Chapter 2 it is sufficient to show the non self-transition term
in this transition density satisfies detailed balance with respect to the
target density (3.8) as self-transitions leave any distribution invariant.
We have that for x # x", u # u’

t(x’,u" | x,u) m(x,u)

F(x' %) p(u) (s u’ | x,u) e(x, u) pu)

pW’) p(u) min{r(x"|x) e(x,u),r(x|x")e(x’,u")} (3.10)

r(x|x’) p(u) a(x,u|x",u’) e(x’,u’) p(u’)

Ql=Ol=Ol=

=t(x,ulx",u)n(x’,u’),

and so the transition operator corresponding to Algorithm 8 leaves the

target distribution invariant.

We can equivalently consider Algorithm 8 as a standard Metropolis-
Hastings transition operator on a target distribution with density (3.8)
using a proposal r(x” | x) p(u’) i.e. perturbatively updating the x values
and independently resampling the u values. Substituting this proposal
density and target density into the standard Metropolis—Hastings ac-

cept ratio recovers the form used in the pseudo-marginal variant,

r(x|x)p)ge(x’ w') p’) (x| x')e(x’,u’)
r(x'| x)pu’) ¢ e(x, u) p(u) (x| x)e(x,u)

(3.11)

This formulation highlights a potential source of some of the computa-
tional issues with the pseudo-marginal Metropolis—Hastings algorithm.

In high-dimensional spaces generally we would expect independent
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Algorithm 9 Auxiliary pseudo-marginal framework.

Input: (x,,u,) : current target variables — auxiliary variables pair, Ty : trans-
ition operator updating only auxiliary variables u and leaving distribution
with density in (3.8) invariant, T, : transition operator updating only target
variables x and leaving distribution with density in (3.8) invariant.

Output: (x,11,u,41) : new target state — auxiliary variables pair.

t Upyr ~ T1(- | Xn, Up)
2 Xpy1 ~ To(o | Xp, Upsq)
3 return (X411, Uptq)

Algorithm 10 Auxiliary pseudo-marginal MI + MH.

Input: (x,,u,) : current target — auxiliary variables state pair, ¢ : estimator
function for density of target distribution, p : density of estimator’s auxiliary
variable distribution, r : proposal density for updates to target state.

Output: (x,41,U,41) : Nnew target — auxiliary variables state pair.

v ut ~p(-) > T;: MI update to auxiliary variables.
2z v~U(-0,1)

s if v < % then

& Upyr & U

5. else

7 X" ~r(|xp) > T»: MH update to target variables.
s w~U0,1)

. r(xn | x") e(x"uns)
o if w < e un,y then

10: Xnt+1 < x*
u: else
12: Xnpn+1 €< X

13 return (xX,41, Upi1)

resampling of a subset of the variables in a Markov chain state from
their marginal distribution for a proposed Metropolis—Hastings move
to perform poorly [186]. Unless the variables being independently res-
ampled have little or no dependency on the rest of the chain state,
the marginal distribution will be significantly different from the condi-
tional distribution given the remaining variables and proposed values
from the marginal will be often be highly atypical under the conditional

and so have a low probability of acceptance.

3.4 AUXILIARY PSEUDO-MARGINAL METHODS

The observation that the pseudo-marginal Metropolis—Hastings update
corresponds to a special case of the standard Metropolis—Hastings al-
gorithm with independent proposed updates to the auxiliary random
variables suggests the possibility of using alternative transition oper-

ators within a pseudo-marginal context. A particularly simple frame-
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work is to alternate updates to the target state x given the auxiliary
variables u and to the auxiliary variables u given the target state x. We
refer to this scheme as the auxiliary pseudo-marginal (APM) framework

and summarise it in Algorithm o.

A simple example of an APM method is formed by alternating Metropolis
independence (MI) updates to the auxiliary variables given the target
variables using R as the proposal distribution with Metropolis—Hastings
(MH) updates to the target variables given the current auxiliary vari-
ables; this variant is described in Algorithm 10. Following the conven-
tion of [185] we name this method ApMm Mi+MH for short and will in
general use the form APM [T1]+[T2] to name APM methods where [T1]
and [T2] are abbreviations for the types of the transition operators T,

and T, respectively.

The APM MI+MH method retains the black-box nature of the original
pseudo-marginal (PM) MH algorithm by requiring no explicit knowledge
of the auxiliary random variables used in the density estimate provid-
ing we can read and write the internal state of the PRNG used by the
estimator. This can be achieved for example using the .Random.seed
attribute in R and the get_state and set_state methods of a NumPy
RandomState object. We then only need to store the PRNG state associ-
ated with each target density estimator evaluation and restore a previ-
ous state if we wish to estimate the density at a new target state with the

same set of auxiliary variables as used for a previous evaluation.

Any PM MH implementation can easily be converted in to a APM MI+MH
method as the two algorithms require exactly the same input objects
with the APM MI+MH method simply splitting the original single MH step
into two separate propose-accept steps. The APM MI+MH method intro-
duces some overhead by requiring two new evaluations of the target
density estimator per overall update (once for the new proposed auxili-
ary variables and once for the new proposed target variables) compared

to the single evaluation required for the PM MH algorithm.

Importantly however the updates to the target variables in APM MI+MH
take the form of a standard perturbative MH update. If we use a random-
walk Metropolis update then this means we can automatically tune the
step size of the updates by for example appealing to theoretical res-
ults suggesting tuning the step size to achieve an average acceptance

rate of 0.234 is optimal (in terms of maximising the number of effect-
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ive samples per computation time) when making perturbative moves
in high-dimensions [94]. The tuning can either be done in an initial
warm-up phase of the chain with the samples from this initial phase
not included in the final Monte Carlo estimates or by using online ap-

proaches which use vanishing adaptation [9, 116].

As discussed earlier for particle filtering estimators, under certain sim-
plifying assumptions an alternative average acceptance rate of 0.07 has
shown to be optimal for PM MH with a isotropic normal random-walk
proposal in high-dimensional target distributions [239]. While this does
provide a target for tuning the step-size of a standard PM MH update in
the cases where it is relevant, the APM MI+MH update may often be
easier to tune in practice. The o0.07 target accept rate is predicated on
the variance of the density estimator having been tuned, via the num-
ber of Monte Carlo samples, such that log density estimates have a
standard deviation of approximately 1.8. In general tuning the density
estimator variance can be non-straightforward as in real problems it
will typically vary depending on x and it is not clear which value or
values to use to measure the variance at, potentially requiring an addi-
tional preliminary run to find a suitable x value to tune at. Further the
non-constant estimator variances found in practice will tend to give an
accept rate which varies in mean and variance across the target space.
This gives a noisy signal for adaptive algorithms to tune the step-size

by, potentially requiring slow adaptation for stability.

In contrast the APM MI+MH method decouples the MI auxiliary updates,
which have an acceptance rate controlled by the variance of the density
estimate® and so N, and the MH target variables updates which have an
acceptance rate which is controlled by the proposal step-size A. The two
distinct accept rates provide independent signals to tune the two free
parameters N and A by, and which individually will generally be less
noisy than the single combined accept rate of the PM MH update.

In density estimators which are simple Monte Carlo averages and when
the cost of the estimator scales linearly with the number of Monte Carlo
samples N such that the results of [238] apply and a choice of N = 1

is close to optimal, the additional signal provided by the accept rate

During the MI update to the auxiliary variables the target variables x are held fixed and
a proposed new set of auxiliary variable values u* and so density estimate p* = e(x,u*)
independently sampled. If the variance of the density estimate tends to zero the ratio
of p* to the previous estimate p which determines the accept probability of the MI step
tends to one.



3.5 PSEUDO-MARGINAL SLICE SAMPLING |

of the MI updates to the auxiliary variables is of less direct relevance.
However as noted previously, in practice often the linear estimator cost
assumption will not hold for small N, due to utilisation of parallel com-
putation or high fixed costs. In these cases we may still wish to use the
MI accept rate to adjust N so that the accept rate is above some lower
threshold: although a low N (and so high estimator variance and low
MI step accept probability) may be preferable in the asymptotic regime
as the number of samples tends to infinity, in practical settings with
finite length chains it can be that an overly high density estimator vari-
ance can lead to very low accept rates for the auxiliary variable updates
such that in a finite length chain the number of updates to the auxiliary
variables is very low (or even zero), potentially leading to biases in the

marginal distributions of the sampled target variables.

3.5 PSEUDO-MARGINAL SLICE SAMPLING

Rather than using a MH update to the target variables, the APM frame-
work also makes it simple to apply alternative transition operators to
pseudo-marginal inference problems. A particularly appealing option
are the linear and elliptical slice sampling (sS) algorithms discussed in
Chapter 2 (Algorithms 4 and 5); when combined with MI updates to the
auxiliary variables we term such methods APM MI+SS. Slice sampling al-
gorithms automatically adapt the scale of proposed moves and so will
generally require less tuning than random-walk Metropolis to achieve
reasonable performance and also cope better in target distributions
where the geometry of the density and so appropriate scale for pro-

posed updates varies across the target variable space.

Slice sampling updates will always lead to a non-zero move of the tar-
get variables on each update providing for fixed values of the auxiliary
variables the estimator function ¢ is a smooth function of the target
variables. In such cases APM MI+SS chains will not show the ‘sticking’
artefacts in the traces of the target variables common to PM MH chains.
As the auxiliary variables are still being updated using Metropolis in-
dependence transitions however they will still be susceptible to having
proposed moves rejected, therefore the accept rate (and traces if avail-
able) of the auxiliary variables updates should also be monitored to

check for convergence issues.
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The APM MI+MH and APM MI+SS methods, although offering advantages
over the standard PM MH method, do not address the issue that pro-
posing new auxiliary variable values independently of their previous
values can perform poorly in high dimensions. Even weak dependence
between the auxiliary variables and target variables will mean that in
high-dimensions the typical set of the marginal auxiliary variable distri-
bution R used as the proposal distribution will differ significantly from
the typical set of the conditional distribution on the auxiliary variables
given the target variables values. This conditional distribution is used
to decide acceptances and so the accept probability of proposed updates

to the auxiliary variables will be small.

One way of increasing the probability of proposed updates to the auxili-
ary variables from R being accepted is to increase the number of Monte
Carlo samples N used in the estimator. For concreteness we will assume
we use the importance sampling estimator (3.4) for inference in a hier-
archical latent variable model with a multivariate normal importance
distribution q(z | x,y) = N (z | 1, LLT) (in general p and L will depend
on x and y but we leave this dependence implicit for notational simpli-
city). Using the reparameterisation of the estimator in (3.7), the target

density (3.8) on the auxiliary and target variables takes the form

LEN: Pxyz(x,y, Lu™ + p)

N
(n)
N [[N(™100). (12

T\Xx,u) =
( ) n=1 Lu n)+”|”’LLT n=1

Using that C = py(y) and N(Lu +ulpy, LLT) = |LI”'N(u]0,1) this

can be manipulated into the form

m(x,u) = Pxiy(x 1Y) <- Z Papey (L™ + 1| x,y) 1—[ (u™10,1).
’ NlLl_l n=1 (u n) | 0 I =1

By separating out the terms involving a single auxiliary variable sample
™) the conditional density on u™ given the remaining auxiliary vari-

able samples can be shown to take the form of a mixture

(w0 3, (™Y pem) o€

(3.13)
pzlx,y(Lu(m) +u | x, y) + w(x, {u(n)}n;f:m)N(u(m) | 0, I)

. n Py (Lu™ + | x,y)
with w(x, {u( )}n¢m) = ;( | j\/(u(”) |O,I) )
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The sum of the importance weights in w will grow with N (for inde-
pendent u™ ~ N(-]0,I) Van # m it would have an expected value
(N —1)|L]) and so for large N the second term in the mixture will in-
creasingly dominate and the conditional density on 1™ will tend to
N (u(m) |0, I) and independence from x. Therefore as we increase N we
would expect independently re-sampling the auxiliary variables from

R in a MI step to have an increasing probability of acceptance.

Although non-rigorous, this analysis also gives an intuition to why the
pseudo-marginal method can provide an advantage over directly per-
forming MCMC in the joint space of x and z in hierarchical latent vari-
able models: if the conditional density on the local latent variables p,x,y
has a challenging geometry, for example it is multimodal, then MCMC
transition operators based on local moves working in the (x, z) space
are likely to mix poorly for example by getting stuck in a single mode
or only being able to make very small moves per update. If we instead
reparameterise in terms of a set of auxiliary variables {u™}¥_, then
we are able to maintain the correct marginal distribution on the tar-
get variables x while working with a distribution on an extended space
which becomes increasingly tractable to sample from as we increase N,

with the individual auxiliary variable samples u individually having

conditional densities which only weakly depend on p,x,y.

While we can always increase N to the point where independently pro-
posing updates to the auxiliary variables from R will have a reasonable
probability of acceptance, this will also increase the computational ex-
pense of each update. Rather than proposing new values for the auxil-
iary variables independently of their previous values, an obvious idea
is to take a more standard MCMC approach by using local perturbative
updates which leave the overall target distribution (3.8) invariant. For
N = 1this equivalent to performing MCMC directly in a non-centred re-
parameterisation [203] of the joint (x, z) space by alternating updates
of the target and auxiliary (latent) variables. For N > 1 we potentially
gain from the conditional distribution on the auxiliary variables being
easier for MCMC algorithms to explore though with an increased com-

putational cost per update.

One option is to use a MH method such as random-walk Metropolis to
update the auxiliary variables. While with a well tuned proposal distri-
bution this approach can work well, it adds further tuning burden to

the user which might outweigh any efficiency gains. For problems in
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Figure 3.2.: Illustration of reflective linear slice sampling in two dimensions.
The orange circular marker represents the current state and the
light filled orange region the density slice at the sampled slice
height (see explanation of Algorithm 4 in Chapter 2 for details).
A random slice line direction vector v is sampled from some dis-
tribution as in Algorithm 4, for example with elements independ-
ently sampled from N (0,1) or U (—1,1). This defines a line passing
through the current point (green-blue line in Figure), with im-
portantly in this case the line reflected at the boundaries of the
hypercube (square in this two-dimensional case). An initial bracket
of a specified width is randomly placed around the current point
on the line. The algorithm then proceeds as in the standard linear
slice sampling algorithm by repeatedly proposing a point in the
current bracket and accepting if on the slice (in orange region, for
example the green circle) or rejecting and shrinking the bracket if
off the slice (outside orange region, for example the red cross).

which we can reparameterise the density estimator as a deterministic
function of a vector of standard normal draws so that p(u) = N(u]0,I),
an appealing option is to use elliptical slice sampling (Algorithm 5) to
update the auxiliary variables. The elliptical slice sampling algorithm
has no free parameters for the user to choose and initially proposes
moves to points nearly independent of the current values [183] so if the
conditional distribution of the auxiliary variables is well approximated
by the normal marginal distribution R, elliptical slice sampling should
perform similarly to a MI update. Using the adaptive bracket shrinking
procedure discussed in Chapter 2 the elliptical slice sampler is also how-
ever able to exponentially back-off to smaller proposed moves around
the current state if the bold initial proposal is not on the slice. Provid-
ing for fixed values of the target variables the target density (3.8) is a
smooth function of the auxiliary variables, the slice sampling procedure

will always lead to a non-zero update of the auxiliary variables.
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3.6 NUMERICAL EXPERIMENTS

If the auxiliary variables are instead marginally distributed as independ-
ent standard uniform variables? i.e. p(u) = []; U (u; | 0,1), one option
is to reparameterise these as independent standard normal variables
which are then mapped through the normal CDF. We can then run el-
liptical slice sampling in the transformed normal space. In general eval-
uation of the normal CDF is a relatively expensive operation and the
distortion induced by pushing through the CDF may in some case map
a distribution with a density with relatively simple geometry in the
uniform space to a density with more complex geometry in the nor-
mal space. An alternative is to therefore perform linear slice sampling

directly in the uniform auxiliary variable space.

A small subtlety is that the target distribution on the auxiliary variables
will only have support on the unit hypercube in this case. We can adjust
Algorithm 4 for this setting by replacing Line 8 in the Algorithm with
x* < REFLECT(Xx, + Av) (and the likewise the corresponding equival-
ent expressions in the step-out routine in Lines 17 and 20), where the

ReFLECT function is defined elementwise by

function REFLECT(u)
v < umod 2

return v 1 [0,1)(1)) +(2-v)1 [1,2)(”)

The reflection transformation defined by this function has a unit Jac-
obian determinant and maintains reversibility and so the reflective slice
sampling transition leaves the uniform distribution on the slice invari-
ant. An illustrative schematic of a reflective linear slice sampling trans-
ition in two dimension is shown in Figure 3.2. Reflective variants of

slice sampling are discussed in [190] and [80].

3.6 NUMERICAL EXPERIMENTS

We will now discuss the results of two empirical studies in to the per-
formance of the proposed auxiliary pseudo-marginal methods. Further
experiments applying some of the proposed methods in a simulator

model inference setting will be discussed in Chapter 4.

The auxiliary variables in this case could for example represent all the standard uniform
draws from the PRNG that are used to generate random variables in the estimator using
the rejection and transform sampling routines discussed in Chapter 2.
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3.6.1 Gaussian latent variable model

As a first numerical example we consider inference in a hierarchical
Gaussian latent variable model. In particular we assume a model with

the factorisation structure shown in Figure 3.1 with

M
px(x) = N(x]0,I), pyx(zlx)= l_l N(z(m) | x, 021),

m=1
" (3.14)

and pyxz(ylx,z) = l_l N(y(m) Iz(’”),ezl).

m=1

We used 0 = 1and € = 2 in the experiments and generate M = 10

M

simulated observed values {y™ m=1

each of dimensionality D = 10.
We assume we wish to infer plausible values for the D-dimensional
vector x consistent with the observed y and so the target distribution
for inference has density p(x) = pxjy(x |y). Here because of the self-
conjugacy of the Gaussian distribution, the marginalisation over the

local latent variables z can be performed analytically to give

1 M 0% + €
b N m e
M+o?+e? DY ’N+02+€21). (15

m=1

PXIy(x ly) = N(x

Although exact inference is therefore tractable in this case, we apply
pseudo-marginal MCMC methods to allow us to study the performance
of the methods in a case where we have a ground-truth for the infer-

ences to check convergence against.

We use an importance sampling estimator of the form given in (3.4)

using P,|x as the importance distribution i.e.

M
q({z(m)}j,fL1 | x, {y(’")}%zl) = 1—[ N(z(m) | x, 021). (3.16)

m=1
As this importance distribution does not take in to account the ob-
served values {y(m)}ﬁ‘rf:1 it results in a relatively high-variance import-
ance sampling estimator of the target density with a variance which
depends on the values of the target variables x. Therefore although ex-
act inference in this example is tractable and the target distribution has
a simple isotropic geometry, in this pseudo-marginal formulation the
model still has some of the key features which can pose challenges to

pseudo-marginal inference algorithms.
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For the auxiliary pseudo-marginal methods, we use a reparameterisa-
tion of the estimator equivalent to (3.7), using the standard normal
variables used to generate samples from P« as the auxiliary variables,
resulting in an auxiliary variable marginal distribution with density

p(u) = N(u]0,I) and an estimator function ¢

N M

N 0,1
e(x,u) = % Z l_l N(y(m) | ou™™ + x, 621), (3.17)
n=1 m=1
with u = [u(l’l); o uBAM) @) u(N’M)] e RNM,

3.6.1.1 Pseudo-marginal Metropolis—Hastings

We first applied the PM MH algorithm to perform inference in this model,
using an isotropic normal random-walk proposal distribution for the
updates to the target variables, i.e. r(x’|x) = N(x’ | x, /121). To as-
sess the impact of the choice of the proposal step size parameter A on
sampling efficiency, we ran 10 independent chains initialised from the
prior N (0,1I) for A values on a equispaced grid of 40 points between
0.025 and 1, running each chain for 50 ooo iterations. We ran all ex-
periments for the cases of density estimators using N = 1, N = 8 and
N = 32 importance samples, with the logarithm of the density estim-
ate at the value of the target variables x used to generate the observed
values y having standard deviation 3.6 for N = 1, 1.8 for N = 8§ and 1.2
for N = 32.

For all combinations of N and A we estimated the effective sample size
(ESS) (as defined for a geometrically ergodic Markov chain in Equation
2.25 of Chapter 2) for the posterior mean of each chain using the R
CODA package [211]. We then derived two overall measures of computa-
tional efficiency from these ESS estimates by normalising either by the
number of joint density evaluations in the density estimator (which in-
creases per iteration with the number of importance samples N) or the
wall clock run time of the chains in seconds. The results are plotted
in Figure 3.3. Each pair of plots in a row corresponds to a particular
number of importance samples. In each row the left column shows the
ESSs normalised by the run time and the right column by the number
of density evaluations, with the green curves representing the mean of
these values across all the chains and the filled region plus and minus
one standard deviation (note the standard deviation rather than stand-

ard error of mean was used as in some of the plots the standard error
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Figure 3.3.: Results of Gaussian latent variable model PM MH chains. The plots

in each row show both the estimated ESS normalised by either the
compute time (green, left column) or number of density estimator
evaluations (green, right column) and average acceptance rate of
MH updates (orange), versus the isotropic random-walk proposal
step-size A for the MH updates to the target variables. The top row
shows the case for a density estimator using N = 1 importance
sample, middle row for N = 8 and the bottom row for N = 32.
In all cases the curves show mean values across 10 independent
chains initialised from the prior and filled region show +1 standard

deviation.
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was too small to be easily visible). On each axis as well as the norm-
alised ESS, the average accept rate across the chains is also plotted in
orange (with scale shown on the right vertical axis), with again the
curves showing the mean value across the chains and the filled regions

plus and minus one standard deviation.

The results of [238] suggest that asymptotically using N = 1 import-
ance sample should be optimal in this case assuming a linear increase
in the cost of generating each sample with N. The measure of computa-
tional efficiency used in [238] therefore most closely corresponds to the
estimated ESS normalised by the number of density evaluations (which
scales linearly with N), and indeed on this measure (green curves in
right column of Figure 3.3) we see that the chains using N = 1 outper-
forms the N = 8 and N = 32 cases.

The plots in Figure 3.3a and to a lesser extent 3.3b show a spurious
appearing behaviour for the smallest step sizes that the accept rate (or-
ange curve) seems to initially increase as the step size is made larger,
contrary to what we would reasonably expect. This anomaly can be
ascribed to a lack of convergence in the chains with small step sizes
due to the sticking behaviour discussed previously. For the N = 1 case,
because of the relatively high density estimator variance, the chains are
prone to getting stuck for thousands of iterations at a time. The estim-
ator variance is dependent on the values of the target variables x and
generally seems to be lower for values typical under the posterior. As
the chains are initialised from the prior, they tend to therefore initial-
ised in regions in which the estimator variance is higher than typical
often leading to long sticking periods near the start of the chain. For
the chains with small step sizes the chain is slower to ‘warm-up’ and
converge towards the typical set of the posterior distribution on the
target variables and so this propensity for sticking during the initial
warm-up period has a larger effect, leading to some chains rejecting
nearly all updates even though the step size is very small. This counter
intuitive behaviour of the empirical accept rates for small step sizes and
general noisiness of the dependency of the accept rate on the step size,
particularly for small N, highlights the difficulty of tuning the PM MH
updates: the low accept rates here would intuitively indicate the step
size should be made smaller but in some cases this would actually make

the measured accept rate even worse.
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Figure 3.4.: Example traces and histograms of PM MH chains in Gaussian latent

variable model inference task. In each row a trace of the sampled
values for the x; target variable in the last 10000 iterations of a
pPM MH Markov chain using the optimal step size for the relevant
N found from Figure 3.3 is shown in the left plot, while the right
plot shows a histogram of the samples values from the full chain
(green filled region) against the exact marginal posterior density
(orange curve). In the histogram plots the number of samples in
the chain used to produce the plot have been adjusted to account
for the increased number of density evaluations for higher N, so
the N = 1 plot is of a chain of 3.2 X 10° samples, the N = 8 plot is
of 8 x 10> samples as the N = 32 plot of 1 x 10° samples.
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Figure 3.4 shows example traces of the x; variable samples for chains
using density estimates with N = 1, N = 8 and N = 32 importance
samples. In each case the step size suggested to be optimal by the res-
ults in Figure 3.3 (in terms of effective samples per density evaluation)
has been used, and the traces shown are the last 10 ooo iterations of a
longer run. Also shown are histogram estimates of the posterior mar-
ginal densities on the x; variable using the sampled states from the
whole chain, with the total number of samples in each chain adjusted
to account for the extra computational cost of using more importance
samples, along with a curve showing the true posterior marginal dens-
ity. The propensity of the chains to stick is clearly visible in the traces
particularly for the N = 1 case, with long series of thousands of re-
jected updates at a time. This is also reflected in the noisiness of the
marginal density estimates with spurious peaks appearing around the

states where the chain gets stuck.

When comparing instead in terms of the estimated ESS normalised by
actual chain run time (green curves in left column of Figure 3.3) the
results no longer suggest N = 1is optimal, with the N = 8 and N = 32
cases both performing better on this measure for all step sizes. This can
be explained by the non-linear scaling of the computational cost per
update with the number of importance samples due to both overhead
from the implementation of the rest of the operations in the transition
and only partial utilisation of the parallel compute resource available
(the CPU used in the experiments had 4 cores). Although the increase in
efficiency per actual run time for N # 1 is implementation and device
dependent, a possibly stronger reason suggested by the results to use
N > 1is the less brittle nature of the chains behaviour, with the very
low accept rates in the N = 1 case needing long runs to smooth out the

effects of long series of rejections.

The results in Figure 3.3 also highlight the difficulty of tuning the pro-
posal step size when using a random-walk Metropolis PM MH update.
The optimal step size appears to possibly weakly depend on the num-
ber of importance samples used (though the noisiness of the curves
make this difficult to determine). Further there is not a clear relation-
ship between the average accept rate and optimal step size. As previ-
ously stated the result of [94] that a step size giving an accept rate of
0.234 is close to optimal is not applicable to the update here, with this

confirmed empirically by the fact that only the chains with the smallest
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step sizes for the N = 32 case are even able to achieve an accept rate
close to 0.234 (and are far from optimal in efficiency). In practice we
therefore we do not have an obvious signal to tune the step size by bey-
ond running pilot chains and computing ESS estimates which is likely
to add too much cost to justify any gain in efficiency from choosing a

better step size for subsequent chains.

3.6.1.2 Splitting the update

We next applied the proposed APM MI+MH algorithm to perform infer-
ence in the Gaussian latent variable model. From an implementation
perspective this simply requires the original combined update to the
auxiliary and target variables in the PM MH case to be split in to separ-
ate MI updates of the auxiliary variables given fixed target variables and
MH updates of the target variables for fixed auxiliary variables. Despite
the seemingly minor change to the form of the update, the difference

in the results is dramatic.

Figure 3.5 shows plots of results of an equivalent series of experiments
as used to produce Figure 3.3. In this case the horizontal axes on the
plots shows the proposal step size for the MH updates to the target
variables which as previously use an random-walk Metropolis proposal
r(x"|x)=N (x’ | x, )LZI). Again 10 independent chains initialised from
the prior were run for each step size A and number of importance
samples N pair, with in this case shorter chains of 20 ooo iterations
used (with the known posterior means and standard deviations used
to establish that the chains had adequately converged). Again the es-
timated ESSs for estimates of the posterior mean were computed for
each chain, with the green curves in the left column of plots in Figure
3.5 showing the mean of these estimated ESSs across the chains normal-
ised by the total wall clock run time for the chain, and the right column
the ESSs normalised by the number of joint density evaluations. The av-
erage accept rate shown by the orange curves in Figure 3.5 is for the
MH update to the target variables. A separate average accept rate was
recorded for the MI updates to the auxiliary variables and was found to
not show any obvious dependency on the target variable proposal step
size, with an average accept rate of approximately 0.025 for chains with
N = 1importance sample in the density estimates, an average accept
rate of 0.11 for chains with N = 8 and an average accept rate of 0.23 for

chains using N = 32.
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Figure 3.5.: Results of Gaussian latent variable model APM MI+MH chains. The

plots in each row show both the estimated ESS normalised by either
the total compute time (green, left column) or number of density
estimator evaluations (green, right column) and average acceptance
rate for the MH updates (orange), versus the isotropic random-
walk proposal step-size for the MH updates to the target variables.
The top row shows the case for a density estimator using N =1
importance sample, middle row for N = 8 and the bottom row
for N = 32. In all cases the curves show mean values across 10
independent chains initialised from the prior and filled region show
+1 standard deviation. The horizontal dashed lines indicate an
accept rate of 0.234 and the vertical dashed lines the corresponding
proposal step size.
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On both the time and density evaluation normalised measures of effi-
ciency the APM MI+MH chains perform significantly better than the PM
MH chains. The peak ESS per density evaluation value for the N = 1and
A = 0.425 case is around a factor of ten higher than the corresponding
peak value for the PM MH chains, while in terms of the ESS per run time
metric the best APM MI+MH chains show around a factor four improve-
ment over the PM MH chains. While other experiments have suggested
this level of improvement is atypical, it seems reasonable to conclude
that at least in some cases the extra overhead introduced by requiring

two density estimates per overall update is worthwhile.

More importantly perhaps the curves in Figure 3.5 suggest the APM
MI+MH update is significantly easier to tune. The average accept rate
of the MH updates to the target variables shows the expected monoton-
ically decreasing behaviour as the step size is increased and in general
the measured accept rates are significantly less noisy than the corres-
ponding accept rates for the PM MH updates. The horizontal dashed
lines in Figure 3.5 indicate an average accept rate of 0.234 with the cor-
responding vertical dashed lines showing the estimated proposal step
size corresponding to this acceptance rate. As can be seen by both the
compute time and density evaluation normalised measures of sampling
efficiency, the chains with proposal step sizes giving accept rates near
to 0.234 are close to optimal in efficiency, suggesting the theoretical res-
ult of [94] holds here as suggested earlier. Further in this model at least,
this relationship seems to hold for a range of different numbers of im-
portance samples and so density estimator variances. This suggests it
is valid to use standard adaptive approaches which use the average ac-
cept rate as a control signal to tune the step size of the target variables

MH proposal distribution when using the APM MI+MH update.

In further contrast to the PM MH results, the results for the APM MI+MH
chains seem to unambiguously support using N = 1importance sample.
On both the computation time and density evaluation normalised meas-
ures of efficiency, the chains using one importance sample dominate
over the N = 8 and N = 32 cases. The APM MI+MH chains using a
single importance sample do not show the pathological sticking beha-
viour evident in the PM MH chains, with an example trace shown for a
step size of A = 0.425 (which Figure 3.5 suggests is close to optimal) in
Figure 3.6a. Unlike the N = 1 PM MH trace, over the 10 0oo iterations

shown the APM MI+MH seems to mix well with no obvious sticking peri-
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Figure 3.6.: Example traces and empirical histograms of APM MI+MH chains

in Gaussian latent variable model inference task. In each row a
trace of the sampled values for the x; target variable in the last
10 000 iterations of a APM MI+MH Markov chain using the optimal
step size for the relevant N found from Figure 3.5 is shown in the
left plot, while the right plot shows an empirical histogram of the
samples values from the full chain (green filled region) against the
exact marginal posterior density (orange curve). In the histogram
plots the number of samples in the chain used to produce the plot
have been adjusted to account for the increased number of density
evaluations for higher N and to account for the 2 evaluations per
update compared to PM MH to allow fair comparison with Figure
3.4, so the N = 1 plot is of a chain of 1.6 X 10° samples, the N = 8
plot is of 2 X 10° samples as the N = 32 plot of 5 x 10* samples.
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Figure 3.7.: Results of Gaussian latent variable model APM SS+MH chains (using
N = 1importance sample). The plots in each row show both the
estimated ESS normalised by either the total compute time (green,
left column) or number of density estimator evaluations (green,
right column) and average acceptance rate for the MH updates
(orange), versus the isotropic random-walk proposal step-size A
for the MH updates to the target variables. The curves show mean
values across 10 independent chains initialised from the prior and
filled region show =*1 standard deviation.

ods. The example traces for the N = 8 and N = 32 APM MI+MH chains
in Figure 3.6 also seem to follow this pattern. Comparing the posterior
marginal density estimates for the x; target variable shown in the right
column of Figure 3.6, the marginal estimates for the N = 1 case appear
the smoothest, almost indistinguishable from the curve of the true dens-
ity (to normalise for the additional density evaluations required for the
N = 8 and N = 32 cases the number of samples in the chains used
to produce the histograms was reduced accordingly). This again sug-
gests that any improvement in mixing by using N > 1 in this case is

outweighed by the cost of the additional density evaluations.

3.6.1.3 Slice sampling the auxiliary variables

For the APM MI+MH chains discussed in the previous subsection, when
using N = 1 importance sample the MI updates to the auxiliary vari-
ables were only accepted 2.5% of the time. Although this did not appear
to impede convergence of the chain in this example, more generally
low accept rates for the MI updates to the auxiliary variables may be
a cause for concern as in shorter chains this will mean the auxiliary
variables are only updated a small number of times across the chain.
As convergence of the distribution on the target variables in the chain
state to their marginal target distribution is reliant on the distribution
of the auxiliary variables in the chain state also converging, very infre-

quent updates of the auxiliary variables could potentially lead to diffi-
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cult to diagnose convergence issues in the chains. Although increasing
the number of importance samples in the estimator can increase the MI
step accept rate as seen in the APM MI+MH experiments above, there is a
diminishing returns behaviour to the increase of acceptance rate with

the number of samples.

The earlier suggestion to use perturbative updates to the auxiliary vari-
ables provides an alternative approach to improve the auxiliary vari-
able mixing. We test specifically here the proposal to use elliptical slice
sampling updates to the auxiliary variables, which is a natural choice in
this case due to their Gaussian marginal distribution. We use the same
MH update to the target variables as in the experiments in the previous
two subsections, and again measure sampling efficiency for different
proposal step sizes A. We only run chains using a estimator taking N = 1
importance sample in this case as we are mainly interested in using per-
turbative updates to the auxiliary variables as an alternative to having
to increase the number of importance samples to achieve reasonable

acceptance rates for MI updates to the auxiliary variables.

Results for an equivalent series of experiments as discussed in the previ-
ous two subsections for APM SS+MH chains using elliptical slice sampling
updates to the auxiliary variables are shown in Figure 3.7. In this case as
the MI updates to the auxiliary variables for the N = 1case seemed to be
sufficient to achieve convergence, the elliptical slice sampling updates
do not seem to significantly improve mixing of the target variables. The
extra overhead from the adaptive slice sampling updates means overall
computational efficiency decreases by roughly a factor of two across
all proposal step sizes A compared to the corresponding APM MI+MH
results for N = 1 in Figure 3.5a, with this consistent across both the
density evaluation normalised efficiency metric and run time normal-

ised measure.

Although the slice sampling updates do not help improve the sampling
of the target variables here, the resulting auxiliary variables samples
are much more representative of their true posterior distribution (which
again can be found analytically) compared to when using MI updates.
Figure 3.8 shows traces and histograms of one of the auxiliary vari-
ables for chains computed using both the APM MI+MH and APM SS+MH
updates. The slice sampling updates give significantly better mixing of
the auxiliary variables than the MI updates which due to the low ac-

cept rate remain fixed for many iterations. Although in this case this
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Example traces and histograms of an auxiliary variable in APM
MI+MH and APM SS+MH chains in Gaussian latent variable model
inference task. In each row a trace of the sampled values for the
u; auxiliary variable in the last 10000 iterations of a Markov chain
using the optimal step size A = 0.425 and N = 1is shown in the
left plot, while the right plot shows a histogram of the sample
values from the full chain (green filled region) against the exact
marginal posterior density (orange curve). In the histogram plots
the number of samples in the chain used to produce the plot have
been adjusted to account for the roughly two times increase in
the number of density evaluations per sample for the APM SS+MH
updates compared to APM MI+MH, so the APM MI+MH plot is of a
chain of 10° samples and the APM ss+MH plot is of 5 x 10* samples.
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Figure 3.9.: Results of Gaussian latent variable model APM chains using linear
SS to update target variables and either MI updates to auxiliary
variables (top row) or elliptical ss updates (bottom row). The plots
in each row show both the estimated ESS normalised by either the
total compute time (left column) or number of density estimator
evaluations (right column), versus the slice sampler initial bracket
width for the linear ss updates to the target variables. The curves
show mean values across 10 independent chains initialised from
the prior and filled region show +1 standard deviation.

does seem to translate to an obvious improvement in convergence of
the target variables, more generally a factor two increase in run time
for the added robustness of significantly improved mixing of the auxili-
ary variables seems like it will often be a worthwhile trade-off to avoid

possible convergence issues.

3.6.1.4 Slice sampling the target variables

As a final set of experiments for this model, we explored the use of
slice sampling updates to the target variables with an auxiliary pseudo-
marginal framework, specifically linear slice sampling updates along
an isotropically sampled direction. To test the claim that the efficiency
of slice sampling updates is less sensitive to the choice of the free initial
bracket width parameter w of the algorithm than random-walk Metro-

polis updates are to the choice of the proposal step size parameter A, we
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ran a similar series of experiments as in the previous sub-sections to
analyse the dependency of sampling efficiency on A by instead varying
the initial bracket width w.

For each of 50 initial bracket width w values on an equispaced grid
between 0.2 and 10, we ran 10 independent APM MI+SS and APM SS+SS
chains (with elliptical slice sampling updates to the auxiliary variables)
initialised from the prior of 20 ooo iterations each. As previously for
each set of chains for a particular w value we computed the estimated
ESSs of the chains for the estimate of the posterior mean and normal-
ised this value by both the total wall-clock run time in seconds and
total number of joint density evaluations to give two measures of over-
all efficiency. The means and one standard deviation intervals of these
values across the 10 chains are shown for the APM MI+SS chains in Fig-
ure 3.9a and for the APM SS+SS chains in Figure 3.9b. In all cases zero
linear step-out iterations were used in the slice sampling updates to the

target variables.

The peak efficiency achieved by the APM MI+Ss chains on this problem
is less than that for the best APM MI+MH chains by a factor of around
1.5 on both measures of efficiency. As the slice sampling updates do
more work per iteration than the MH updates this is not unexpected
as a well-tuned MH update will generally perform better than a slice
sampling update when the geometry of the target distribution is simple
(as is the case here). Importantly however the slice sampling updates
maintain a computational efficiency that is within around 10% of the
optimal efficiency across a wide range of initial bracket width values,
with values from w = 2 to w = 10 all seeming to perform reasonably
well in this problem. This is in contrast to the much tighter range of
proposal step size values required to get good performance with MH
updates to the target variables. The exponential back-off to smaller
proposals provided by the adaptive bracket shrinking procedure in the
slice sampling transition means that the penalty for using an overly
large scale parameter w is much less severe than the corresponding

situation for using an overly large A in a MH update.

The APM $s+SS chains have around half the sample efficiency of the APM
MI+SS chains for the same bracket width w due to the additional compu-
tational cost of the elliptical slice sampling updates to the auxiliary vari-
ables. As the cost of the elliptical SS updates to the auxiliary variables

dominates over that of linear SS updates to the target variables here, the
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APM $S+SS chains have a similar per sample computational cost as the
APM SS+MH chains. The extra overhead of the SS rather than MH updates
to the target variables is minimal and so the peak sample efficiencies of
these two methods are similar. However the APM SS+Ss chains remain
close to this peak efficiency over a much wider range of scale parameter

settings (bracket width w or proposal step-size A).

3.6.2 Gaussian process probit regression

As a second experiment we consider a more challenging problem of
inferring the parameters of the covariance function of a latent Gaus-
sian process used to model the relationship between pairs of feature
vectors and binary target outputs. The use of PM MH for this task was
considered in [87] and shown to give significant improvements over

competing MCMC methods.

As an example data set we used the Wisconsin breast cancer prediction
data set [162] from the UCI machine learning dataset repository [158]
as also used for experiments in [87]. The data {d'm, Ym }M_, consists
of pairs of vectors d m) of K =9 integer descriptors of individual cells
found in a fine needle aspiration biopsy of suspect breast lumps, and a
binary class y,, indicating whether the lump was later found to malig-
nant or benign. The original dataset contains 699 data-points, however
17 data-points have missing attributes so M = 682 data-points were

used in the experiments here.

To model the unknown relationship between the input descriptors and
binary class label output, a zero-mean Gaussian process prior [221]
was placed on a set of latent real-valued function values z € RM.
A squared exponential covariance function was used with per-feature
length scales £ € ]RI:0 and output scale s € R, with the covariance

function specifically defined as

function SQEXPCOV({d(m)}%zl,S, t,e=107%)
forie {1..M} do
Ci,i «—S+e€
forje {1..i—1} do
( Lop [d0-a\"
Cij « sexp|l —3 Zk_l( 7% ) )

Cji < Cyj

return C
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Gamma(11/10,1/10)

Gamma(1,1/3) SQExpCov

: N(0,C) : Ber(®(z)) C

Figure 3.10.: Gaussian process probit regression factor graph.

G

The € value is a ‘jitter’ parameter to improve numerical stability [221].
This covariance functions represents an assumption that nearby d (m)
points correspond to similar z values, with the typical length-scales in
the feature space over which correlations are high determined by the
values of the elements of £. The latent variables z are assumed to de-
termine the probability of the observed binary class outputs y being
one or zero by a probit link function i.e. given z = z the binary out-
puts are modelled as having a Bernoulli distribution Ber($(z)) where
@ is the standard normal CDF function. Following [87] Gamma prior
distributions were placed on both the per-feature length-scales £ and
output-scale s covariance function parameters. The overall model is

shown as a directed factor graph in Figure 3.10.

For inference we assume we are interested in inferring the posterior
distribution on the € and s covariance function parameters given the
observed input-output pairs, such that we could then use the inferred
plausible £ and s values to make predictions of the outputs correspond-
ing to unlabelled inputs. We define the target variables for inference x
as the logarithms of £ and s so that the target distribution has support
on an unbounded space i.e. x = [logs; log#] and x € R!, with a Jac-
obian determinant factor accounting for the change of variables being

included in the transformed prior (marginal) density py

11x;  exp(xq) 1 exp(x;)
px(x) o exp(— - ) exp(x,- - ) (3.18)
10 10 ll;[ 3

The unnormalised target density is then p(x) = px,y(x,y) o pyx(y | x).
We cannot evaluate pyx as it involves an intractable marginalisation

over the latent function values z

M
Py(ylx) = /ZH(@(zmw'"(l—@(zm»l—ym)N(z 0,C)dz. (3.19)
m=1
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One option would be to construct a Markov chain on the joint (x, z)
space with an unnormalised target density pyy., however strong de-
pendencies between the (transformed) covariance function parameters
x and the latent variables z makes the joint distribution difficult for
MCMC methods to explore effectively [87]. As an alternative [87] pro-
poses to use the pseudo-marginal framework to construct a Markov

chain using an unbiased importance sampling estimator of p.

Though a Monte Carlo estimate of (3.19) can be formed by sampling
latent values z from the Gaussian process prior p,|x, as this ignores the
observed output values y this will tend to lead to a density estimator
with an unusably high variance for the purposes of use in a pseudo-
marginal update. A key insight in [87] was that much lower variance
density estimates can be computed by using an optimisation-based ap-
proximate inference method to fit a Gaussian approximation to p,|xy
(which as discussed previously is the optimal choice for the importance
distribution in terms of minimising variance) to use as the importance
distribution. In [87] both Laplace’s method and expectation propaga-
tion are considered within this context; we concentrate on Laplace’s

method here for simplicity.

As discussed in Appendix C, Laplace’s method involves finding the
mode of the density being approximated and then evaluating the Hes-
sian matrix of the log density at this point. An efficient and numerically
stable implementation of a Newton-Raphson method can be used to
find the mode of the latent posterior for this probit regression Gaussian
process model [221, §3.4] with the latent posterior density guaranteed
to have a unique mode. Each Newton—-Raphson step involves comput-
ing a Cholesky factorisation of the Hessian of the log density at the cur-
rent point which has a O(M?) computational cost. In the experiments
around 10 Newton steps were needed to achieve convergence when
finding the mode. Evaluating the density of the Gaussian process prior
on the latent function values z also requires computing a Cholesky de-
composition of the Gaussian process covariance matrix which again
has O(M?) cost. As M = 682 these cubic cost operations will tend to
be the dominant contributor to the overall run time. As the Gaussian
process covariance and Laplace approximation to the latent posterior
both depend on the value of the covariance function parameters, the
cubic operations have to be performed each time a density estimate is

computed at a new value for the target variables.
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Once an approximate Gaussian latent posterior N ( Py 2 x,y) hasbeen
fitted using Laplace’s method, it can then be used as the importance
distribution in an importance sampling estimator of the form shown in
(3.4). The Cholesky factorisation Ly, = chol X , is computed as part
of the Laplace’s method iteration, and so can be reused to efficiently
evaluate the importance distribution density at a O(M?) cost for each
importance sample and to generate samples from the importance dis-
tribution using z(™ = Lx,yu(") +p, , where u™ is a sampled stand-
ard normal vector from N (0,I), this again having a O(M?) cost. This
same expression can also be used to reparameterise the estimator as a
deterministic function of a set of independent standard normal values

u=[u®; u® . u™]asshown previously in (3.7).

Due to the high overhead of the cubic operations the result of [238]
that a choice of N = 1 is close to optimal does not apply here. In ex-
periments in [238] with a similar Gaussian process classifier model
(using a logistic link function and a dataset with M = 144) it was
found computational efficiency was approximately maximised by us-
ing N = 200 importance samples with it noted that this is around the
number required for the O(M2N) cost of sample generation to be of
comparable magnitude to the cubic operation cost. In the example of
[238] a non-iterative approach is used to find a Gaussian importance
distribution hence only a single Cholesky decomposition of the import-
ance distribution covariance matrix is required. The use of an iterative
Laplace method approximation for the importance distribution here as
proposed in [87] makes it unclear whether a similar choice of the num-
ber of importance samples is reasonable here. While the even higher
overhead of the multiple cubic operations per estimator evaluation sup-
ports possibly using N > M, part of the justification of using an ex-
pensive procedure to fit the importance distribution is that it means
fewer importance samples are needed to achieve a low-variance dens-
ity estimator. In the experiments with the same dataset in [87], N = 1
importance sample was used and found to work well, though in that
case an isotropic covariance function was used with a single length
scale parameter such that the dimensionality of the target space was

two rather than ten as here.

In preliminary runs we found that the PM MH update had very low
accept rates however small we set the proposal step-size when using

N = 1limportance sample in the density estimator. Increasing the num-
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ber of importance samples to N = 50 gave a significant improvement
in performance and overall stability with a negligible increase in run
time per update. Increasing the number of importance samples further
to N = 500 gave a further increase in efficiency but also increased the
run time in our implementation by around one third which outweighed
the per iteration sampling efficiency gains made. We therefore used
N = 50 importance samples for the main experiments with all meth-
ods; given the limited number of values tested this is unlikely to be
optimal but in most practical situations we would be unlikely to per-
form an exhaustive search for the optimal N. Interestingly the auxiliary
pseudo-marginal methods appeared to still be able to mix when using
N = 1importance sample with APM MI+MH chains still able to achieve
a target accept rate in the range [0.15, 0.3] for the MH updates to the tar-
get variables. Due to the negligible increase in run time however when
using N = 50 importance samples we performed the experiments for

the APM methods with N = 50 also.

We generated Markov chains for the model using each of PM MH, APM
MI+MH, APM SS+MH and APM SS+SS for the updates. For the MH updates
to the target variables we used a Gaussian random-walk Metropolis
proposal distribution r(x" | x) = N(x’ | x, /121). To set the proposal step
size A we followed the adaptive approach used in [87], with the step
size adjusted over an initial warm-up phase of 2000 iterations, with the
average accept rate over every 100 iterations used as a control signal
to decide whether to increase or decrease the step size. Also following
[87] a target average accept rate range of [0.15,0.3] was used4, with the
step size made smaller or larger, if the average accept rate is below or
above this range respectively during the adaptive phase. As noted in the
previous experiments, while a target rate of 0.234 for the MH updates
to the target variables in APM methods can be justified theoretically
and empirically, it is not clear what the optimal choice is for PM MH
updates, with this seeming to be dependent on the estimator variance
and so number of importance samples N. While the [0.15, 0.3] target
accept rate range therefore seems reasonable for the APM methods it is
unclear whether it is a good choice for the pseudo-marginal method,

however as it was used with some success in [87] and given a lack of

Although in the published version of [87] it is stated a target range of [0.2,0.3] was
used, the code accompanying the paper suggests a range of [0.15, 0.3] was used in the
experiments so we follow that instead.
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obvious alternative methods for choosing the target rate, we use it for
the PM MH updates here.

For the APM SS+MH and APM SS+SS methods we used elliptical slice
sampling for the updates to the auxiliary variables. For the slice samp-
ling update to the target variables in the APM SS+SS chains we used
linear slice sampling along a random direction vector (sampled isotrop-
ically) with a fixed initial bracket width of w = 4 and no linear step out
iterations. To account for the 2000 adaptive warm up iterations per-
formed before the main PM MH, APM MI+MH and APM SS+MH chains, for
the APM SS+SS chains we ran 1000 warm up iterations before the main
chain runs. For all four methods, 10 chains independently initialised
from the prior were run for 10 ooo iterations, with both the total num-
ber of cubic operations performed and overall run time recorded to al-

low for adjustment for different per iteration costs in the results.

Results of the experiments are summarised in Figure 3.11. As a first
measure of performance we consider the relative estimated sampling
efficiency of the different methods. For each of the 10 target variables
we estimated the ESS for the estimated mean of the variable using R
CODA [211] and normalised these values by the total number of cubic
operations performed in each chain’. The means of these values across
the 10 chains per method (and standard errors) are shown for each of

the target variables in the bar plot in Figure 3.11a.

By this ESS measure of efficiency, the APM MI+MH and APM sS+MH chains
both consistently perform better than the PM MH chains, with they per-
forming very similarly to each other, and the APM SS+SS chains per-
form worse than all other methods. Note that as the updates to the
auxiliary variables to do not require any cubic operations (providing
the Cholesky factorisations of the Gaussian process prior covariance
and importance distribution covariance at the current target variable
values are cached from the target variable update), there is little effect
on the overall run time from using elliptical sS updates to the auxiliary
variables as opposed to MI updates, hence the much closer performance
here of APM MI+MH and APM SS+MH compared to the previous Gaussian

latent variable experiments. The average accept rate of the MI updates

The mean chain run time per cubic operation performed was 0.0184 + 0.00007 s for PM
MH, 0.0187 £ 0.00014 s for APM MI+MH, 0.0196 + 0.00012 s for APM SS+MH and 0.0184 +
0.00013 s for APM SS+SS so using the cubic operation count as a proxy for overall
computational cost seems reasonable here and removes the effect of any variable
background system processes on the wall-clock run times.
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(a) Sampling efficiency. ESS estimates for each of 10 target variables normalised
by the number of cubic cost operations performed per chain. The bars
show the means values across 10 independent chains with markers for +1
standard error of mean.
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(b) Chain convergence. Plots of PSRF R statistic on a log scale computed across
10 independent chains initialised from the prior for increasing number
of chain iterations (normalised by mean total run time for each method
to adjust for different per iteration run times) for each of four transition
operators tested. Curves show median value and filled regions indicate
confidence interval to upper 95th percentile of computed estimate. A R
value of unity is indicative of chains having converged to stationarity,
so for the plotted log(R — 1) values, more negative values indicate chains
approaching convergence.

Figure 3.11.: Gaussian process probit regression results.

to the auxiliary variables in the APM MI+MH chains was 0.24 here sug-
gesting there is probably a limited gain from using elliptical SS updates
to the auxiliary variables in this case as the MI updates are likely to be

mixing the auxiliary variables sufficiently well.

Although PM MH seems to outperform the APM SS+SS method here, other
results suggest the estimated ESS measures of performance should be
treated with some caution, with in general estimated ESSs being suscept-
ible to giving misleading results when chains have poorly converged.
Figure 3.11b shows plots of the potential scale reduction factor (PSRF) con-

vergence diagnostic proposed by Gelman and Rubin in [98], also often
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termed the R statistic. This is a heuristic measure of Markov chain con-
vergence computed from multiple independent chains initialised from
a distribution which should be over-dispersed compared to the (com-
mon) target distribution (we use the prior here). The diagnostic com-
pares the between-chain and within-chain variance of each variable in
the chain state, with a necessary but not sufficient condition for con-
vergence being that these converge to being equal, corresponding to
a R value of one. We used CODA to estimate the R values from the 10
independent chains run for each method as a function of an increasing
number of iterations in the chain sequences used to compute the R es-
timates. We then accounted for the different per iteration run time of
the different methods (in particular the APM Ss+ss chains took on av-
erage ~ 2.5% longer per iteration than the other methods) by plotting
these R values for increasing chain iterations against the estimated run
time to complete that number of iterations, the resulting curves shown
in Figure 3.11b. The darker coloured curves show the median of the es-
timated R interval and the lighter filled regions of the same colour show
the 50oth-g5th percentile range of the estimate. To allow the curves to
be more clearly distinguished, the R values are plotted on a shifted log
scale i.e. log(R — 1), with more negative values therefore corresponding
to R values closer to one and so are indicative of the chains being closer

to convergence.

On this measure of performance the PM MH chains seem to perform
more poorly, showing a slower convergence rate than the other meth-
ods, including the APM SS+Ss chains. The non-monotonically decreas-
ing behaviour seen in the R curve for the PM MH chains seems to be
the result of the chains suffering the earlier discussed sticking beha-
viour, with one of the 10 chains found to have stuck for a run of over
2000 iterations and multiple incidents of sticking periods of hundreds
of iterations in all of the chains. An example trace of one of the chains
for the x; target variable is shown in Figure 3.12a where these stick-
ing periods are clearly visible. The chains run using N = 500 import-
ance samples (traces not shown here) also showed sticking behaviour
though somewhat less frequently, suggesting that while increasing the
number of importance samples can lessen the impact of these events,
it does not seem to necessarily eliminate them. Figure 3.12 also shows
example chain traces for the x; variable for each of the three other APM
methods; in all cases here there are no visible long sticking periods and

this was also reflected across the other chains not shown.
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Figure 3.12.: Example traces and histograms of target variable x; = log s from
chains sampled using pseudo-marginal and auxiliary pseudo-
marginal approaches in Gaussian process probit regression model
inference task. In each row a trace of the sampled values for the x
variable for a single 10 000 iteration Markov chain is shown in the
left plot, while the right plot shows a histogram of the sampled
values from all 10 chains. In the histogram plots the number of
samples in the chain used to produce the plot have been adjusted
to account for the roughly 2.5 times increase in run time for the
APM S$+SS chains compared to the other methods.
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The right column of Figure 3.12 shows histograms for the x; target vari-
able computed from the samples from all 10 chains for each method
(in the case of the APM SS+Ss chains only the first 4000 iterations from
each chain were included to account for the roughly 2.5 times slower
run time per chain in this case). Although we do not have a ground
truth for the marginal posterior density here to compare against, it
seems reasonable to assume that the spurious peaks in the histogram
for the PM MH chains are not a reflection of the true marginal density
but instead a result of the long sticking artefacts in the chains causing
the states that the chain remains stuck at to be overly represented in
the histograms. The APM methods produced much smoother marginal
density estimates, with the APM SS+SS chains seeming to give a partic-
ularly smooth result here even with the run time adjustment meaning
this histogram is computed from less than half the number of samples
as used in the other methods. Although by no means conclusive, this
provides a further suggestion that the relatively poor standing of the
APM SS+SS chains on the ESS measure of performance is not an entirely

accurate portrayal of the overall performance of the method.

3.7 DISCUSSION

The auxiliary pseudo-marginal methods discussed in this Chapter are
a relatively simple extension to the existing pseudo-marginal MCMC

framework which nonetheless offer some important benefits.

The simplest proposed approach of splitting the combined proposed
update to both auxiliary and target variables in the standard PM MH
algorithm into a separate Metropolis independence update to the aux-
iliary variables and Metropolis—Hastings update to the target variables
(APM MI+MH) involves changing only a few lines of code in most im-
plementations and adds no further free parameters to tune. Despite in-
volving only a minor change, in the empirical studies performed this
adjusted update was found to give significantly better computational
cost normalised sampling efficiency over the standard pseudo-marginal
Metropolis—Hastings update, despite in some cases doubling the com-
putational effort per overall chain update. A simple intuition for under-
standing this improved performance is that for a fixed proposal distribu-
tion for the target variables, the accept rate of the MH update to the tar-
get variables in the APM MI+MH chains was typically more than double
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the corresponding accept rate for the overall PM MH update. Therefore
the doubling of the number of density estimates needed per iteration
was more than outweighed by more than double the number of pro-
posed target variable updates from the same proposal distribution (e.g.

same Gaussian random-walk step-size) being accepted

The size of the increase in the accept rates for a fixed proposal distri-
bution is dependent on how high the variance of the density estimator
is or equivalently how dependent the target and auxiliary variables are
under the auxiliary joint target. For high variances cases e.g. when us-
ing N = 1importance sample, the increase in accept rates for the target
variable updates in APM MI+MH chains over the accept rate of the PM
MH updates is higher due to the poor performance of making independ-
ent proposed updates to the auxiliary variables in the PM MH having
a strong deleterious effect on the PM MH accept rate. For example in
the Gaussian latent variable model experiments when using N = 1 im-
portance sample the accept rate of the MH updates in the APM MI+MH
chains was typically around a factor of 20 higher than the accept rate
for the corresponding PM MH chains using the same proposal step size.
As the variance of the density estimator is decreased by increasing N,
the difference in the accept rates for a fixed proposal step size becomes
less marked with around a factor five difference for N = 8 and around
a factor two difference for N = 2 between APM MI+MH and PM MH. So
with a lower variance estimator the difference in performance between

APM MI+MH and PM MH becomes less marked.

However the recommendation of [238] suggests that when the compu-
tational cost of each PM MH update scales linearly with N (and when us-
ing a density estimator formed as an average of unbiased Monte Carlo
estimates) that using N = 1 is close to optimal for PM MH despite the
higher estimator variance. As the low N, high density estimator vari-
ance cases are precisely when we expect to see the largest potential
gains from using APM MI+MH over PM MH this suggests when this lin-
ear cost scaling argument is valid there will often be a computational
gain from using APM MI+MH. In some cases as we saw in the Gaussian
process experiments we can form a much lower variance density estim-
ate by expending some computational effort to fit a good importance
distribution. In these cases due to the additional overhead of the fitting
procedure the linear cost scaling argument no longer applies. Further

the density estimates in this case may be sufficiently low variance for
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there to be little improvement in accept rates of updates to the target
variables by splitting the PM MH in to separate MI and MH updates. How-
ever typically in these cases the overhead introduced by separately up-
dating the auxiliary variables in an MI step will also be much less than
the cost of the original PM MH update, as for fixed values of the target
variables the importance distribution does not need to be refitted and
any target variable dependent computations such as Cholesky factor-
isations of covariance matrices can be cached and reused. Therefore the
overall cost per APM MI+MH update will be very close to that of each PM
MH update and so even a small improvement in accept rate of the target

variable updates can make it worthwhile to split the update.

Perhaps more important than the sampling efficiency gains seen from
using APM MI+MH over PM MH in the experiments here was the signi-
ficantly improved ability to tune the MH updates in the algorithm even
when using a high-variance density estimator. By decoupling the de-
pendency of the MH accept rate from the density estimator variance,
theoretical guidelines for choosing a proposal step-size based on the av-
erage accept rate can be straightforwardly applied to tune APM MI+MH
updates. The resulting increased ease of use of the algorithm and de-
creased requirement for user intervention to get good performance
might often make APM MI+MH an attractive choice even when the extra
run time overhead per update negates any sampling efficiency gains.
Further the separate MI step accept rate of the APM MI+MH update pro-
vides a diagnostic already computed as part of the chain updates which
can alert users to issues with poor mixing of the auxiliary variables due
to low accept rates of the auxiliary updates. In contrast it will not al-
ways be clear if a poor accept rate of a PM MH chain is due to poor
choice of the target variables proposal distribution or due to a high
density estimator variance, and separately monitoring the density es-
timator variance as part of the update adds overhead while not being

as directly interpretable as the MI step accept rate.

If initial runs using an APM MI+MH method do show a very low accept
rate for the updates to the auxiliary variables which might lead to con-
vergence issues, the proposed APM SS+MH approaches offer a simple
‘plug-in’ solution to improve mixing of the auxiliary variables without
having to tune a separate proposal distribution for a MH update to the
auxiliary variables. If the auxiliary variables can be naturally represen-

ted as being marginally distributed according to the standard normal
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distribution, then elliptical slice sampling is a straightforward choice,
having no free parameters to tune and still initially proposing bold
moves to near independent points in the auxiliary space while able to
back-off to more conservative updates to ensure a non-zero move to

the auxiliary variables under weak smoothness conditions.

Another common case is auxiliary variables which are naturally para-
meterised as a vector of standard uniform draws, in which case reflect-
ive linear slice sampling offers analogous benefits. Although the linear
slice sampling algorithm does have a free initial bracket width para-
meter to be chosen, in general (as seen in the experiments using this
algorithm for updates to the target variables in the Gaussian latent vari-
able model) the efficiency of the algorithm is not strongly dependent on
the choice of this parameter providing it is set large enough to cover
most of the intersection of the slice with the sampled line as the ex-
ponential shrinking of the bracket on proposing an off slice point will
quickly reduce the bracket to a more appropriate size if set initially too
large. For reflective slice sampling in the unit hypercube a fixed initial
bracket width of one and a direction vector v sampled from N (0, I) was
found to work well in experiments applying APM SS+MH methods to in-

ference in a doubly-intractable Ising model problem in [185].

Independently of and concurrently with the original conference public-
ation [185] related to this work, both Dahlin et al. [68] and Deligiannidis
etal. [73] considered related frameworks in which the auxiliary random
variables of a pseudo-marginal density estimator are updated using a
Metropolis—Hastings method which leaves the distribution defined by
the density (3.8) on the joint auxiliary-target variable space invariant.
Both assume a parameterisation in which the auxiliary variables have
an isotropic standard normal marginal distribution p(u) = N(u]0,I),
and consider a Metropolis—Hastings update to the auxiliary variables

with proposal density
r'(u'|u) = N(u' | V1- Azu,/lzl) (3.20)

which can be considered as a discretisation of a Ornstein-Uhlenbeck
diffusion process or as a fixed step size update on an elliptical path that
the elliptical slice sampling algorithm 5 generalises by adaptively set-
ting the step size A. This fixed step-size Metropolis—Hastings update is

more amenable to analysis, with both [68] and [73] giving much more
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extensive theoretical justifications for using perturbative updates to the
auxiliary variables (or equivalently introducing correlations in between
the auxiliary variable samples) than the mainly intuition based and em-
pirical arguments made here. These theoretical insights are important
for informing future development of these ideas. In practical settings
however, though the above M update with an optimally tuned choice
of A may give better sampling efficiency performance compared to the
elliptical slice sampling updates proposed here, we would suggest that
the additional tuning burden placed on the user and loss of robustness
in cases where the appropriate step size varies across the state space,
would suggest that elliptical slice sampling updates to the auxiliary

variables are still often a good default choice.

The empirical evidence for using slice sampling updates to the target
variables as in the proposed APM MI+SS and APM SS+SS methods is less
strong, with in both of the models considered in the experiments here
these methods having poorer run-time adjusted efficiency than the APM
MI+MH and APM SS+MH methods respectively. If adapting an existing PM
MH algorithm where some effort has already been extended to identify
an appropriate proposal distribution for updates to the target variables
or other information is available to inform this choice, the additional
overhead of the slice sampling updates might not be worthwhile. In
cases however where we have less prior knowledge about appropriate
scales for updates to the target variables or are more concerned with
overall robustness and ease of use, slice sampling updates to the target

variables are likely to be more attractive.

Subsequent to the publication of the conference paper related to this
work, Lindsten and Doucet proposed the use of HMC within an (aux-
iliary) pseudo-marginal framework [159]. Under the assumption that
the joint auxiliary target density (3.8) is defined with respect to the
Lebesgue measure and is differentiable, their pseudo-marginal Hamilto-
nian Monte Carlo algorithm proposes jointly updating the auxiliary and
target variables using a HMC transition operator. In particular they as-
sume the marginal distribution on the auxiliary variables R is stand-
ard normal N (0,I) and leverage this to propose an alternative sym-
plectic integrator to the typical leapfrog scheme which improves the
scaling of the method the dimensionality of the auxiliary variable space
is high.
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In numerical experiments with a hierarchical model of a diffraction pro-
cess with a three target variables to infer, it was found that the proposed
pseudo-marginal HMC algorithm gave similar performance to using a
APM SS+MH update when normalised by the computational cost per up-
date. In a second experiment with a generalised linear mixed model
with a 13 dimensional target space, the proposed pseudo-marginal HMC
algorithm was compared to a APM SS+MH update in which the update
to the target variables is formed of a sequential scan of per-dimension
random-walk Metropolis updates to each individual target variable. It
is reported that attempts to jointly update all target variables in the
MH step led to very poor acceptance rates. The traces for the pseudo-
marginal HMC chain (Figure 4 in [159]) in this case indicate improved
mixing compared to the APM SS+MH update, though as the run-time per
sample of the pseudo-marginal HMC method is reported to be approx-
imately 3.5 times higher in the implementation used and the traces do
not appear to be run-time adjusted it is not clear what a cost norm-
alised comparison would show. Autocorrelation plots for chains from
the two approaches are also shown (Figure 13 in [159]), with the pseudo-
marginal HMC method showing quicker decay of the autocorrelations
per sample lag compared to APM SS+MH though again it is not clear if the
autocorrelation plots are run-time adjusted. Both the pseudo-marginal
HMC and APM SS+MH chains appear to mix significantly better than
Particle Gibbs [8], an auxiliary variable approach based on a particle

filter density estimator.

The use of HMC updates with an auxiliary pseudo-marginal framework
seems an appealing idea when the required gradients are available due
to the improved performance in complex high-dimensional target dis-
tributions often offered by HMC methods, and the integrator proposed
by [159] is an elegant approach for exploiting structure in the auxiliary
target distribution to give improved performance when the number of
auxiliary variable dimensions is large. Though in the experiments in
[159] itis not clear how significant the gain in performance is over using
random-walk Metropolis updates to the target variables in a APM SS+MH
method, it seems plausible that in models with higher-dimensional tar-
get space that HMC updates would start to increasingly outperform
random-walk Metropolis updates to the target variables. In the next
chapter we will discuss related methods which apply HMC updates to
perform inference in simulator models; this work was performed con-

currently and independently to [159].
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In the approximate inference methods considered in Chapter 2 a uni-
fying element was the requirement to be able to evaluate an explicit
probability density function for the target distribution of interest. In
the previous chapter we considered the pseudo-marginal framework
which allowed relaxing this requirement to being able to evaluate an
unbiased (and non-negative) estimator for the target density. In this
chapter we will consider probabilistic models specified by a generat-
ive process in which the density of the model variables is defined only
implicitly [19, 77, 113] - that is we can generate sample values for the
variables in the model, but we cannot tractably evaluate the probabil-
ity distribution of those variables or more specifically its density with

respect to an appropriate base measure.

Although models without an explicit density function are challenging
to work with from an inferential perspective, they are ubiquitous in
science and engineering in the form of probabilistic models defined
by the computational simulation of a physical system. Typically simu-
lator models are specified procedurally in code with any stochasticity
introduced by drawing values from a pseudo-random number gener-
ator. The complexity of the function mapping from random inputs to
simulated outputs typically makes calculating an explicit density on the
outputs at best non-trivial and often intractable (as seen for a simple

example in Figure 1.6 in Chapter 1).

There has also been a long history in statistics of using distributions
defined by their quantile function [126, 254] from which we can easily
generate independent samples using the inverse transform sampling
method discussed in Chapter 2. Although these quantile distributions
are often able to offer very flexible descriptions of shape of a distribu-
tion [104] often the quantile functions will not have an analytic inverse
meaning their CDF and so density function cannot be evaluated analyt-
ically. Generative models in which the density of the model variables is
only defined implicitly have also been the subject of substantial recent

interest in the machine learning community due to the development
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of effective training approaches which do not require evaluation of a
density on the model variables [82, 110, 157], with there being signific-
ant gains in modelling flexibility by dropping the requirement to be

able to compute an explicit density function [177, 252].

The focus of this chapter will therefore be methods for performing ap-
proximate inference in generative models where we do not necessarily
have access to an explicit density on the model variables. A lack of
an explicit density function makes it non-trivial to directly apply the
approximate inference approaches that have been discussed so far in
this thesis. This has spurred the development of inference approaches
specifically targeted at implicit generative models such as indirect in-

ference [113] and approximate Bayesian computation (ABC) [19].

In both indirect inference and ABC, inferences about plausible values
of the unobserved variables are made by computing distances between
simulated observed variables and observed data. At a qualitative level,
values of the unobserved variables associated with simulated observa-
tions that are ‘near’ to the data are viewed to be more plausible. This
approximation that the simulated observations are only close but not
equal to the observed data makes the inference problem more tractable,
but also biases the inference output. Further simple distance measures
tend to become increasingly less informative as the dimensionality of a
space increases, making it challenging to use these approaches to per-
form inference in models with large numbers of unobserved variables.
This motivates the use of dimensionality reduction techniques to pro-
ject the observations to a set of lower-dimensional summary statistics.
Although through careful choice of summaries this approach can yield
good results, identifying informative summaries is challenging and ex-
cept for rare cases where sufficient statistics are available any reduction
to summary statistics will entail a loss of information about the unob-

served variables compared to conditioning on all observations.

We make two main contributions in this chapter. First we show that
by reparameterising the approximate conditional expectations estim-
ated in ABC approaches to inference in generative models it is possible
to express them in the form of an expectation of a function of a ran-
dom vector variable distributed according to a density which we can
evaluate up to a normalising constant. This makes it possible to apply
efficient general purpose approximate inference methods such as slice

sampling and Hamiltonian Monte Carlo to implicit generative models



—_

41 DIFFERENTIABLE GENERATOR NETWORKS |

without the need to develop dedicated ABC variants. It is sometimes
feasible to apply these methods when conditioning on all observations
without the need to reduce dimensionality using summary statistics.
The reparameterisation used is closely related to that applied to pseudo-
marginal density estimators in the previous chapter, with existing ABC
MCMC methods being a common special case of the pseudo-marginal

Metropolis—Hastings update discussed there.

Secondly for a restricted class of generative models we term differenti-
able generative models and which we define in a following section, we
show that it is possible to express exact conditional expectations un-
der the model as integrals against a density we can evaluate pointwise
across an implicitly defined manifold. We use this to propose a novel
constrained HMC method for performing inference in differentiable gen-
erative models. Unlike ABC approaches, this method allows inference
to be performed by conditioning the observed variables in the model to
be within arbitrary small distances of the data values while remaining

computationally tractable.

The contributions described in this chapter have previously appeared

in the published conference paper

e Asymptotically exact inference in differentiable generative models.
Matthew M. Graham and Amos J. Storkey. Proceedings of the zoth
International Conference on Artificial Intelligence and Statistics,

PMLR 54:499-508, 2017.

I was the primary author of that work and proposed the novel contribu-
tions made in the paper. I also performed and analysed the numerical
experiments described in the paper, some of which are reproduced in
this chapter in Section 4.10. This chapter expands upon the analysis and
discussion in the above publication and includes additional numerical

experiments.

4.1 DIFFERENTIABLE GENERATOR NETWORKS

We first review two approaches to specifying generative models using
differentiable networks', generative-adversarial networks (GANs) [110]

and wvariational autoencoders (VAEs) [139, 224]. Although the methods

A a differentiable parametric function formed by interleaving ‘layers’ of affine trans-
formations and elementwise non-linearities, also termed a neural network.
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N(O,T) go N(O,T) N (mg (h), diagsg (h)?)
LB R T
(a) GAN generator (b) Gaussian VAE decoder

N(0,1)

(c) Reparameterised Gaussian VAE decoder

Figure 4.1.: Example factor graphs for the generator of a GAN and decoder of a
VAE. (a) The generator for a GAN with a standard normal distribution
on the hidden code h, this mapped through a differentiable network
go, to generate the simulated output vector y. (b) The decoder of
a Gaussian VAE. Again a hidden code vector h with a standard
normal distribution is used, differentiable network functions mg
and sy then mapping from this code vector to mean and diagonal
covariance parameters of a multivariate normal distribution on the
output vector y. (c) The same VAE decoder model as (b), with in
this case the conditional factor on the outputs y given hidden code
h reparameterised in terms of a deterministic transformation of a
standard normal vector n.

used for training these models differ significantly, their generative com-
ponent have the same form of a function, specified by a differentiable
network, which takes as input a vector of random variables from a
known distribution and outputs a generated sample from an implicitly
defined distribution. The overarching term differentiable generator net-
works has been suggested for generative models with this form [109].
We will use a VAE model in one of the later experiments in this chapter
so this material is partly to provide the necessary background for our
description of the models used in that experiment, however more broad-
ly the structure of the generative models described here was a key in-

spiration for the ideas described in this chapter.

GANs [110] have become a popular approach in unsupervised machine
learning for training models which can generate plausible simulated
data points, typically images, given a large collection of data to learn
from. The training procedure for GANs is posed as a minimax game
between a generator function, a differentiable network gg which re-
ceives as input a vector of values h drawn from a simple known dis-
tribution such as the standard normal and outputs a simulated data

point y = gg(h), and an adversarial discriminator function dg, which
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predicts whether a presented vector input is a simulated or real data
point drawn from the training data. Training proceeds by updating the
generator parameters 0 to maximise the expected discriminator uncer-
tainty, while the discriminator parameters ¢ are updated to minimise

the expected discriminator uncertainty.

Although there are many variants of this basic outline of the training
procedure, for our purposes the main relevant factor is that most GAN
models retain the same basic structure for the generator, which is visu-
alised as a factor graph in Figure 4.1a. While py, is known, as y is a de-
terministic transformation of h there is not a well-defined joint density
on h and y. If gg were bijective we could apply the change of variables
formula (1.22) to calculate the density py in terms of p, and the Jac-
obian Jg, however this will not usually be the case - typically in fact

the dimensions of y and h will differ.

An alternative generative modelling approach using differentiable net-
works is the Gaussian VAE [139] or deep latent Gaussian model [224]. In
a Gaussian VAE differentiable networks mg and sy are used to gener-
ate respectively the mean and per-dimension standard deviations, cor-
responding to a diagonal covariance matrix, of a conditional normal
distribution on the outputs given a hidden code vector h drawn from
a known distribution. The simulated output y can then be generated
by sampling from the conditional distribution A (mg(h), diag se (h)?)
given a sampled code vector h. Unlike a GAN, in a Gaussian VAE the joint
density on y and h is tractable to evaluate, for the case of a normally

distributed code vector h corresponding to

Pyn(®.h) = N (y | mg(h), diagse(h)’) N'(h]0,T).  (4.1)

Although typically we cannot marginalise out the hidden code vector
h to get the marginal density on the generated outputs y, having ac-
cess to the joint density allows the use of standard approximate in-
ference methods when training the model. In particular as suggested
by their name variational autoencoders are trained using a parametric
variational inference approach which uses a second encoder differenti-
able network to encode the parameters of a variational approximation
to the posterior density pp|y, given a data point y, with a lower bound
on the log joint density of the data points then maximised with respect

to the encoder and decoder network parameters. Once a VAE model is
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trained, the joint density (4.1) also allows direct application of approx-
imate inference methods such as MCMC to infer plausible values for a
subset y, of the decoder generated outputs y given observations of the

remaining values y, by jointly inferring y, and h given y,.

By reparameterising the normal conditional factor py, in (4.1) as a de-
terministic transformation y = mg(h)