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A B S T R A C T

Markov chain Monte Carlo (MCMC) methods are a widely applicable
class of algorithms for estimating integrals in statistical inference prob-
lems. A common approach in MCMC methods is to introduce additional
auxiliary variables into the Markov chain state and perform transitions
in the joint space of target and auxiliary variables. In this thesis we con-
sider novel methods for using auxiliary variables within MCMC methods
to allow approximate inference in otherwise intractable models and to
improve sampling performance in models exhibiting challenging prop-
erties such as multimodality.

We �rst consider the pseudo-marginal framework. This extends the
Metropolis–Hastings algorithm to cases where we only have access to
an unbiased estimator of the density of target distribution. The result-
ing chains can sometimes show ‘sticking’ behaviour where long series
of proposed updates are rejected. Further the algorithms can be di�cult
to tune and it is not immediately clear how to generalise the approach
to alternative transition operators. We show that if the auxiliary vari-
ables used in the density estimator are included in the chain state it is
possible to use new transition operators such as those based on slice-
sampling algorithms within a pseudo-marginal setting. This auxiliary
pseudo-marginal approach leads to easier to tune methods and is often
able to improve sampling e�ciency over existing approaches.

As a second contribution we consider inference in probabilistic models
de�ned via a generative process with the probability density of the out-
puts of this process only implicitly de�ned. The approximate Bayesian

computation (ABC) framework allows inference in such models when
conditioning on the values of observed model variables by making the
approximation that generated observed variables are ‘close’ rather than
exactly equal to observed data. Although making the inference problem
more tractable, the approximation error introduced in ABC methods can
be di�cult to quantify and standard algorithms tend to perform poorly
when conditioning on high dimensional observations. This often re-
quires further approximation by reducing the observations to lower
dimensional summary statistics.

We show how including all of the random variables used in generat-
ing model outputs as auxiliary variables in a Markov chain state can
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allow the use of more e�cient and robust MCMC methods such as slice
sampling and Hamiltonian Monte Carlo (HMC) within an ABC frame-
work. In some cases this can allow inference when conditioning on
the full set of observed values when standard ABC methods require re-
duction to lower dimensional summaries for tractability. Further we
introduce a novel constrained HMC method for performing inference
in a restricted class of di�erentiable generative models which allows
conditioning the generated observed variables to be arbitrarily close to
observed data while maintaining computational tractability.

As a �nal topic we consider the use of an auxiliary temperature variable
in MCMC methods to improve exploration of multimodal target densit-
ies and allow estimation of normalising constants. Existing approaches
such as simulated tempering and annealed importance sampling use
temperature variables which take on only a discrete set of values. The
performance of these methods can be sensitive to the number and spa-
cing of the temperature values used, and the discrete nature of the tem-
perature variable prevents the use of gradient-based methods such as
HMC to update the temperature alongside the target variables. We in-
troduce new MCMC methods which instead use a continuous temperat-
ure variable. This both removes the need to tune the choice of discrete
temperature values and allows the temperature variable to be updated
jointly with the target variables within a HMC method.
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L AY S U M M A R Y

Much of the information we receive about the world is uncertain. By
implication the conclusions we draw from this noisy and incomplete
information are also subject to uncertainty. Probability theory o�ers
a consistent framework for describing the uncertainty in our beliefs
about the world in the form of a probabilistic model and in making in-
ferences about the variables in that model. Although the basic rules of
probability which underlie the inference process are easy to state, for
problems of even moderate complexity the calculations involved in per-
forming inference are typically intractable to compute exactly as they
involve an exhaustive iteration over a combinatorially large or even in-
�nite number of possible con�gurations of the model variables.

This thesis is concerned with the development of e�cient methods for
approximate inference in complex probabilistic models. Such methods
trade-o� a loss of exactness for an increase in computational tractab-
ility. In particular we focus here on the topic of Markov chain Monte
Carlo methods, which are a class of approaches for approximating the
computations involved in inference. A noisy dynamic is constructed
which explores the probability distribution on con�gurations of the
model variables which are plausible given our observed information.
The model variable values sampled by this dynamic can then be used
to represent our beliefs about the model variables given the observed
information and to e�ciently approximate the calculations involved in
inference by computing averages over the sampled values.

This thesis speci�cally considers methods which augment the space of
model variables being explored by the dynamic with additional auxili-
ary variables. In some cases this allows the robustness or e�ciency of
the resulting sampling methods to be improved, for example by mak-
ing it easier for the sampler to move between separated regions of high
probability in the model variable space. In other settings rede�ning the
state space of the problem can allow us to perform inference in set-
tings where we do not have an explicit form for the distribution on the
variables of interest, for example in simulator models where we can
generate plausible values for the model variables but not necessarily
express the probability distribution on those variables.
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1 I N T R O D U C T I O N

Inference is the process of drawing conclusions from evidence. While The actual science of

logic is conversant at

present only with

things either certain,

impossible, or entirely

doubtful, none of

which (fortunately)

we have to reason on.

Therefore the true

logic for this world is

the calculus of

probabilities

—James Clerk

Maxwell

deductive logic o�ers a framework for inferring conclusions from abso-
lute statements of truth, it does not apply to the more typical real-world
setting where the information we receive is uncertain. To make infer-
ences under conditions of uncertainty, we must instead turn to probab-
ility theory, which both o�ers a consistent framework for quantifying
our beliefs and making inferences given these beliefs.

The key computational task in inference is computing integrals with re-
spect to probability distributions on the variables in a proposed model.
Typically these integrals will not have analytic solutions and the large
number of variables being integrated over mean numerical quadrature
methods are impractically costly. In these cases we must resort to ap-
proximate methods which trade-o� an introduction of error for an in-
crease in computational tractability. Markov chain Monte Carlo (MCMC)
methods are a very generally applicable class of approximate inference
techniques which estimate the integrals of interest by computing aver-
ages over the states of a Markov chain.

The topic of this thesis is the development of MCMC methods. In par-
ticular we introduce several novel methods which exploit reparamet-
erisations and augmentations of the state of a Markov chain to improve
upon the computational e�ciency, ease of use or degree of approxima-
tion error of existing approaches.

In this chapter we discuss the basic concepts of probabilistic modelling
which underpin the inference methods discussed in later chapters. In
particular we review the terminology and basic concepts of the measure-
theoretic description of probability as some of the later results in the
thesis are most clearly described within this framework. We also in-
troduce graphical models as a compact way of visualising structure in
probabilistic models. Finally we conclude with a discussion of the spe-
ci�c inference problems that the methods presented in the rest of this
thesis are intended to help tackle.
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16 introduction

1.1 probability theory

A probability space is de�ned as a triplet (S, E, P) whereA σ -algebra, E, on a

set S is set of subsets

of S with S ∈ E,
∅ ∈ E and which is

closed under

complement and

countable unions and

intersections.

• S is the sample space, the set of all possible outcomes,

• E is the event space, a σ -algebra on S, de�ning all possible events
(measurable subsets of S),

• P is the probability measure, a �nite measure satisfying P(S) = 1,
which speci�es the probabilities of events in E.

Given this de�nition of a probability space, Kolmogorov’s axioms [142]Kolmogorov’s axioms:

1. Non-negativity:

P(E) ≥ 0 ∀E ∈ E,
2. Normalisation:

P(S) = 1,
3. Countable additivity:

for any countable set

of disjoint events

{Ei}i : Ei ∈ F ∀i ,
Ei ∩ Ej = ∅ ∀i , j,
P(∪iEi ) = ∑

i P(Ei ).

can be used to derive a measure-theoretic formulation of probability
theory. The probability of an event E ∈ E is de�ned as its measure P(E).
Two events A,B ∈ E are independent if P(A∩ B) = P(A)P(B).

The key advantage of the measure-theoretic approach to probability is
that it provides a consistent de�nition of the probability of an event in
any space we can de�ne a measure on. This allows a uni�ed treatment
of the common cases of probability distributions of discrete and con-
tinuous random variables but also makes it possible to consider distri-
butions on more general spaces. In Chapter 4 we will consider problems
which involve distributions on implicitly-de�ned manifolds where this
generality will be key to understanding the proposed methods.

1.1.1 Random variables

When modelling real-world processes, rather than considering eventsIf (X , F ) and (Y , G)
are two measurable

spaces, a function

f : X → Y is

measurable if

f −1 (E) ∈ F ∀E ∈ G.

as subsets of an abstract sample space, it is usually more helpful to
consider random variables which represent quantities in the model of
interest. A random variable x : S → X is de�ned as a measurable
function from the sample space to a measurable space (X , F ).

Often X is the reals, R, and F is the Borel σ -algebra on the reals, B(R),The Borel σ -algebra
B(R) is the smallest

σ -algebra on R

which contains all

open real intervals.

in which case we refer to a real random variable. It is also common to
consider cases where X is a real vector space, RD , and F = B(RD ) - in
this case refer to a real random vector and use the notation x : S → X . A
�nal speci�c case is when X is countable and F is the power set P (X )

in which case we refer to x as a discrete random variable. As we are most
often concerned with real-valued random variables and vectors in this
thesis, when it is unambiguous to do so we drop the ‘real’ quali�er and
simply refer to random variables and random vectors.
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Due to the de�nition of a random variable as a measurable function, If (X , F ) and (Y , G)
are two measurable

spaces, µ a measure

on these spaces and

f : X → Y a

measurable function,

the pushforward

measure µf satis�es

µf (A) = µ ◦ f −1 (A)
∀A ∈ G.

we can de�ne a pushforward measure on a random variable x

Px (A) = P ◦ x−1 (A) = P({s ∈ S : x(s ) ∈ A}) ∀A ∈ F . (1.1)

The measure Px speci�es that the probability of the event that the ran-
dom variable x takes a value in a measurable set A ∈ F is Px (A). We
typically describe Px as the distribution of x.

1.1.2 Joint and conditional probability

Typically we will jointly de�ne multiple random variables on the same
probability space. Let (S, E, P) be a probability space and x : S → X ,
y : S → Y be two random variables with corresponding σ -algebras F
and G. Then the joint probability of x and y is de�ned as

Px,y (A, B) = P
(
x−1 (A) ∩ y−1 (B)

) ∀A ∈ F , B ∈ G. (1.2)

The joint probability is related to Px and Py by

Px,y (A, Y ) = Px (A), Px,y (X , B) = Py (B) ∀A ∈ F , B ∈ G. (1.3)

In this context Px and Py are referred to as marginal distributions of the
joint distribution. Two random variables x and y are said to be inde-
pendent if and only if

Px, y (A,B) = Px (A) Py (B) ∀A ∈ F , B ∈ G. (1.4)

A particularly key concept for inference is the de�nition of conditional In Kolmogorov’s

probability theory,

(1.5) is given as an

additional de�nition

distinct from the

basic axioms. In

alternatives such as

the work of Cox [65,

66] and de Finetti

[88], conditional

probabilities are

instead viewed as a

primitive.

probability. The conditional probability of an event A ∈ E occurring
given another event B ∈ E has occurred is denoted P(A | B) and we
have the de�nition

P(A | B) = P(A∩ B)
P(B)

∀A ∈ E, B ∈ E : P(B) , 0. (1.5)

Correspondingly we denote the conditional probability of the event of
the random variable x taking a value in A ∈ F given the event that the
random variable y takes a value in B ∈ G as Px |y (A | B). Using (1.5) and
(1.2), Px |y and Py |x can be shown to satisfy

Px,y (A, B) = Px |y (A | B) Py (B) = Py |x (B | A) Px (A)

∀A ∈ F , B ∈ G.
(1.6)
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This decomposition of a joint probability into a product of a conditional
and marginal is sometimes referred to as the product rule. An implica-
tion of (1.6) is what is often termed Bayes’ theorem

Px |y (A | B) =
Py |x (B | A) Px (A)

Py (B)
∀A ∈ F , B ∈ G : Py (B) , 0, (1.7)

which will be of key importance in the later discussion of inference.

The de�nition in (1.2) of the joint probability of a pair of random vari-
ables can be extended to arbitrarily large collections of random vari-
ables. Similarly conditional probabilities can be de�ned for collections
of multiple jointly dependent random variables, with the product rule
given in (1.6) generalising to a combinatorial number of possible factor-
isations of the joint probability. Graphical models o�er a convenient
way of representing the dependencies between large collections of ran-
dom variables and any resulting factorisation structure in their joint
probability, and are discussed in Section 1.2.

1.1.3 Probability densities

So far we have not speci�ed how the probability measure P is de�ned
and by consequence the probability (distribution) of a random variable.
The Radon–Nikodym theorem guarantees that for a pair of σ−�niteA measure on X is

σ -�nite if X is a

countable union of

�nite measure sets.

measures µ and ν on a measurable space (X , F ) where ν is absolutely
continuous with respect to µ, then there is a unique (up to µ-null sets)
measurable function f : X → [0,∞) termed a density such that

ν (A) =

∫

A

f dµ =
∫

A

f (x ) µ (dx ) ∀A ∈ F . (1.8)

The two Lebesgue integral notations above are equivalent and we willIf µ and ν are

measures on a

measurable space

(X , F ) then ν has

absolute continuity

WRT to µ if ∀A ∈ F ,

µ (A) = 0⇒ ν (A) = 0.

use them interchangeably. The density function f is also termed the
Radon-Nikodym derivative of ν with respect to µ, denoted dν

dµ . Density
functions therefore represent a convenient way to de�ne a probability
distribution with respect to a reference measure we will term the base

measure. The key requirement de�ning what is an appropriate base
measure to use is that the probability measure of interest is absolutely
continuous with respect to it.

It can also be shown that if f = dν
dµ andд is a measurable function

∫

X

д(x ) ν (dx ) =
∫

X

д(x ) f (x ) µ (dx ), (1.9)
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which we will use later when discussing calculation of expectations.

Real random variables will typically have a distribution Px de�ned by The Lebesgue

measure assigns a

measure to subsets of

a Euclidean space,

and for R, R2
and

R3
formalises the

intuitive concepts of

length, area and

volume of subsets

respectively.

a probability density px : R → [0, ∞) with respect to the Lebesgue

measure, λ, on R,

Px (A) =

∫

A

px (x ) λ(dx ) =
∫

A

px (x ) dx ∀A ∈ B(R). (1.10)

Analogously for a random vector x with density px : RD → [0, ∞)

with respect to theD-dimensional Lebesgue measure λD we have that

Px (A) =

∫

A

px (x ) λ
D (dx ) =

∫

A

px (x ) dx ∀A ∈ B(RD ). (1.11)

The notation in the second equalities in (1.10) and (1.11) uses a conven-
tion that will be used throughout this thesis that integrals without an
explicit measure are with respect to the Lebesgue measure.

The probability distribution of a discrete random variable can be de�ned The counting measure

# is de�ned as
#(A) = |A| for all
�nite A and

#(A) = +∞
otherwise.

via probability density px : X → [0, 1] with respect to the counting

measure #,

Px (A) =

∫

A

px (x ) #(dx ) =
∑

x ∈A
px (x ) ∀A ∈P (X ). (1.12)

The co-domain of a probability density px for a discrete random variable
is restricted to [0, 1] due to the non-negativity and normalisation re-
quirements for the probability measure Px, with ∑

x ∈X px (x ) = 1. Com-
monly for the case of a discrete random variable, the density px is in-
stead referred to as a probability mass function, with density reserved
for real random variables. We will however use probability density in
both cases in keeping with the earlier de�nition of a density, this avoid-
ing di�culties with terminology and notation when de�ning joint prob-
abilities on a mixture of real and discrete random variables.

The joint probability Px,y of a pair of random variables x and y with co- If (X1, F1, µ1) and
(X2, F2, µ2) are two
measure spaces, the

product measure

µ1 × µ2 on a

measurable space

(X1 × X2, F1 ⊗ F2) is
de�ned as satisfying

(µ1 × µ2) (A1 ×A2) =
µ1 (A1)µ2 (A2)
∀A1 ∈ F1, A2 ∈ F2.

domains the measurable spaces (X , F ) and (Y , G) respectively, can
be de�ned via a joint probability density px,y : X × Y → [0,∞) with
respect to a product measure µx,y = µx × µy by

Px,y (A,B) =
∫

A×B
px,y (x ,y) µx,y (dx , dy) (1.13)
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As a consequence of Fubini’s theorem, the integral with respect to µx,y

can be expressed as iterated integrals with respect to µx and µy

Px,y (A,B) =
∫

A

∫

B

px,y (x ,y) µx (dx ) µy (dy)

=

∫

B

∫

A

px,y (x ,y) µy (dy) µx (dx ) ∀A ∈ F , B ∈ G.
(1.14)

The two measures µx and µy can di�er for example µx = λ and µy = # if
x is a real random variable and y is a discrete random variable.

When dealing with random variables, we will often only specify the co-
domain of the random variable(s) and a (joint) probability density, with
the base measure being implicitly de�ned as the Lebesgue measure for
real random variables (or vectors), counting measure for discrete ran-
dom variables and an appropriate product measure for a mix of random
variables. Similarly we will usually neglect to explicitly de�ne the prob-
ability space (S, E, P) which the random variable(s) map from. In this
case we will typically use the loose notation x ∈ X to mean a random
variable x with co-domain X .

Tables A.1, A.2 and A.3 in Appendix A give de�nitions of the densit-
ies and shorthand notation for some common parametric probability
distributions that we use in this thesis.

1.1.4 Transforms of random variables

A key concept we make use of in this thesis is de�ning transformations
of random variables. Let x be a random variable with co-domain the
measurable space (X , F ). Further let (Y , G) be a second measurable
space and ϕ : X → Y a measurable function between the two spaces. If
we de�ne y = ϕ ◦ x then analogously to our original de�nition of Px as
the pushforward measure of P under the measurable function de�ning
x, we can de�ne Py in terms of Px as

Py (A) = Px ◦ϕ−1 (A) = Px ({x ∈ X : ϕ (x ) ∈ A}) ∀A ∈ G, (1.15)

i.e. the probability of the event y ∈ A is equal to the probability of x

taking a value in the pre-image under ϕ of A. To calculate probabilities
of transformed random variables therefore we will therefore need to be
able to �nd the pre-images of sets under the transformation.
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If the distribution Px is de�ned by a density px with respect to a measure
µx, we can also in some cases �nd a density py on the transformed vari-
able y = ϕ (x) with respect to a (potentially di�erent) measure µy

Py (A) =

∫

ϕ−1 (A)
px (x ) µx (dx ) =

∫

A

py (y) µy (dy) ∀A ∈ G. (1.16)

For random variables with countable co-domains where the integral in
(1.16) corresponds to a sum, a py satisfying (1.16) is simple to identify. If x

is a discrete random variable with probability density px with respect to
the counting measure, then y = ϕ (x) will necessarily also be a discrete
random variable. Applying (1.16) for px =

dPx
d# we have that1

∫

ϕ−1 (A)
px (x ) #(dx ) =

∑

x ∈ϕ−1 (A)
px (x ) =

∑

y∈A

∑

x ∈ϕ−1 (y )
px (x )

=

∫

A

∑

x ∈ϕ−1 (y )
px (x ) #(dy) ∀A ∈ G. (1.17)

We can therefore de�ne py =
dPy

d# in terms of px as

py (y) =
∑

x ∈ϕ−1 (y )
px (x ) ∀y ∈ Y . (1.18)

In the special case thatϕ is bijective with an inverseϕ−1 we have that

py (y) = px ◦ϕ−1 (y) ∀y ∈ Y . (1.19)

For transformations of real random variables and vectors, the situation
is more complicated as we need to account for any local contraction
or expansion of space by the transformation. We will consider here
the special case where the transformation is a di�eomorphism: a di�er-
entiable bijection which has an inverse which is also di�erentiable. In
Chapter 4 we will consider how this can be generalised to non-bijective
di�erentiable functions, including the case where the dimensionalities
of the domain and co-domain of the function di�er.

1 We use ϕ−1 (y) as a shorthand here for ϕ−1 ({y}) i.e. the pre-image of a singleton set {y}
under ϕ or equivalently the �bre of an element y under ϕ. In cases where an inverse
function exists we will also use the same notation, which of the three meanings is
intended should be clear from the context.



22 introduction

Let X ⊆ RN and Y ⊆ RN and ϕ : X → Y be a di�eomorphism. Then
the Jacobian of ϕ is de�ned as

Jϕ(x ) =
∂ϕ

∂x
=



∂ϕ1
∂x1

· · · ∂ϕ1
∂xN... . . . ...

∂ϕN
∂x1

· · · ∂ϕN
∂xN


. (1.20)

The Jacobian matrix describes the local transformation of an in�nites-
imal volume element dx in X under the map ϕ. In particular the cor-
responding volume element in Y under the map will be an in�nites-
imal parallelotope spanned by the columns of the Jacobian Jϕ(x ). The
Jacobian matrix determinant ��� Jϕ(x )��� which corresponds to the volume
of this parallelotope therefore determines hows the volume elements
scales under the map - a value more than one corresponds to a local
expansion and less than one to a contraction. Informally we therefore
have that dy = ��� Jϕ(x )��� dx and applying the same arguments to the
inverse map ϕ−1, dx = ��� Jϕ−1(y)��� dy.

Let x be a random vector taking values in the measurable space (X , B(X ))

and de�ne y = ϕ ◦ x as a random vector taking values in (Y , B(Y )). If
Px has a density px with respect to the Lebesgue measure

Py (A) = Px ◦ϕ−1 (A) =
∫

ϕ−1 (A)
px (x ) dx

=

∫

A

px ◦ϕ−1 (y) ��� Jϕ−1(y)��� dy.
(1.21)

Therefore Py has a density py with respect to the Lebesgue measure

py (y) = px ◦ϕ−1 (y) ��� Jϕ−1(y)��� ∀y ∈ Y . (1.22)

In both the cases considered, we have seen that if the functionϕ the ran-
dom variable x is mapped through is bijective, it is tractable to compute
a density on the mapped random variable y as the pre-image ϕ−1 (y) of
a point y ∈ Y is itself a point. Bijectivity is a very limiting condition
however, with many models involving non-bijective transformations of
random variables. In Chapter 4 we will discuss methods for performing
inference in generative models de�ned by complex, non-dimension pre-
serving and non-bijective transformations of random variables.
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1.1.5 Expectations

A key operation when working with probabilistic models is computing
expectations. Let (S, E, P) be a probability space, and x : S → X a ran-
dom variable on this space. The expected value of x is de�ned as

E[x] =
∫

S

x dP. (1.23)

Usually it will be more convenient to express expectations in terms of
the probability Px. If д : X → R is an integrable function then

∫

X

д(x ) Px (dx ) =
∫

S

д ◦ x(s ) P(ds ). (1.24)

If we take д as the identity map we therefore have that

E[x] =
∫

X

x Px (dx ). (1.25)

If Px is given by a density px =
dPx
dµ then using (1.9) we also have

E[x] =
∫

X

x px (x ) µ (dx ). (1.26)

A further useful implication of (1.24) is what is sometimes termed the
Law of the unconscious statistician. Let x : S → X be a random variable,
ϕ : X → Y a measurable function and de�ne y = ϕ ◦ x. Then

E[y] =
∫

S

y(s ) P(ds ) =
∫

S

ϕ ◦ x(s ) P(ds ) =
∫

X

ϕ (x ) Px (dx ), (1.27)

i.e. the expectation of y can be calculated by integrating ϕ with respect
to Px. This means we can calculate the expected value of a transformed
random variable y = ϕ (x) without using the change of variables formu-
lae from Section 1.1.4 to explicitly calculate the density py and with a
relatively weak condition of measurability on ϕ.

Closely related to the expected value are the variance and covariance of
a random variable. The variance of a random variable x is de�ned

V [x] = E
[
(x − E[x])2

]
= E

[
x2

]
− E[x]2. (1.28)

For a pair of random variables x and y their covariance is de�ned

C[x, y] = E[(x − E[x]) (y − E[y])]. (1.29)
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1.1.6 Conditional expectations and densities

A related concept, and one which will be key to the discussion of in-
ference, is conditional expectation. Let (S, E, P) be a probability space,
(X , F ) and (Y , G) two measurable spaces and x : S → X and y : S → Y

two random variables. Then the conditional expectation of x given y, is
de�ned as a measurable function E[x | y] : Y → X satisfying

∫

y−1 (B)
x(s ) P(ds ) =

∫

B

E[x | y](y) Py (dy) ∀B ∈ G. (1.30)

E[x | y] is guaranteed to be uniquely de�ned almost everywhere in Y

by (1.30), i.e. up to Py-null sets. As a particular case where B = Y we
recover what is sometimes termed the Law of total expectation

∫

S

x dP =
∫

S

E[x | y] ◦ y dP =⇒ E[x] = E[E[x | y] ◦ y]. (1.31)

We will also use a more standard notation for the conditional expect-
ation evaluated at point E[x | y = y] ≡ E[x | y](y) but use the latter in
this section to stress its de�nition as a measurable function.

Conditional expectation can be used to de�ne the regular conditional

distribution of a random variable conditioned on another random vari-
able taking a particular value

Px |y (A |y) = E[1A ◦ x | y](y) ∀y ∈ Y , A ∈ F . (1.32)

We have reused our notation for conditional probability of random vari-
ables from Section 1.1.2 here, however it should be clear from whether
the value conditioned on is a point or a set which is being referred to.
A regular conditional distribution Px |y (· |y) de�nes a valid probability
measure on (X ,F ) for Py-almost all y and using (1.30) we have

Px,y (A,B) =
∫

B

Px |y (A |y) Py (dy) ∀A ∈ F , B ∈ G. (1.33)

We can use this relationship to also motivate a de�nition of conditional
density. We require that a joint density px,y =

dPx,y
d(µx×µy)

exists and has

marginal density py =
dPy

dµy
. Then for all A ∈ F , B ∈ G

∫

B

Px |y (A |y) Py (dy) =
∫

B

∫

A

px,y (x ,y) µx (dx ) µy (dy) (1.34)



1.2 graphical models 25

If we de�ne the conditional density px |y as

px |y (x |y) =


px,y (x ,y )
py (y )

∀x ∈ X , y ∈ Y : py (y) > 0

0 ∀x ∈ X , y ∈ Y : py (y) = 0
(1.35)

then substituting this de�nition in to (1.34) we have
∫

B

Px |y (A |y) Py (dy) =
∫

B

∫

A

px |y (x |y) µx (dx ) Py (dy). (1.36)

Therefore px |y is the density of the regular conditional distribution Px |y.
We also have that if px,y and py can be de�ned that

E[x | y](y) =
∫

X

x px |y (x |y) µx (dx ) ∀y ∈ Y : py (y) > 0. (1.37)

Note that the initial de�nition of conditional expectation in (1.30) was
not dependent on a joint density px,y being de�ned.

1.2 graphical models

When working with probabilistic models involving large numbers of Graphical models =

statistics × graph

theory × computer

science

—Zoubin Ghahramani

random variables, it will often be the case that not all the variables
are jointly dependent on each other but that instead there are more
local relationships between them. Graphical models, which use graphs
to describe the dependencies between random variables, are a useful
framework for visualising the structure of complex models.

Several graphical formalisms for representing dependency structure in
probabilistic models have been proposed, with directed graphical mod-

els [206] (also known as Bayesian networks) and undirected graphical

models [138] (also known as Markov random �elds) both common in
practice and each o�ering a more natural representation for certain
model classes. In this thesis we will instead use factor graphs [90, 91]
which combine the representational abilities of both directed and un-
directed graphical models while also o�ering a richer framework for
representing �ne-grained information about model structure.

Factor graphs are bipartite graphs consisting of two node types: vari-
able nodes, displayed as labelled circles and representing individual (po-
tentially non-scalar) random variables in a probabilistic model, and
factor nodes, displayed as �lled squares and representing individual
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x3

x1 x2

(a) Example directed factor graph.

x1 x2

x3

(b) Example undirected factor graph.

Figure 1.1.: Examples of simple directed and undirected factor graphs. Square
black nodes correspond to individual factors depending on the con-
nected variables represented by circular nodes in the joint density.

factors in the joint density across the random variables in the model.
Edges between nodes in a factor graph are always between nodes of dis-
parate types i.e. between factor and variable nodes, but never between
factor and factor or variable and variable nodes.

Factors may be either directed or undirected. Undirected factors, de-
noted by factor nodes in which all edges connecting to variable nodes
are undirected, correspond to a factor in the joint density which de-
pends on all of the variables with nodes connected to the factor, but
without any requirement that the factor corresponds to a conditional
or marginal probability density.

Directed factors, factor nodes in which at least one edge from the factor
node to a variable node is directed, correspond to a conditional dens-
ity on the variables pointed to by directed edges given the values of
the variables connected to the the factor node by undirected edges. If
there are no undirected edges then the factor instead corresponds to
a marginal density. Graphs with directed factors must not contain any
directed cycles, i.e. connected loops of edges in which one of every pair
of edges connected to a factor on the loop is directed and all of the dir-
ected edges point in the same sense around the loop.

Figure 1.1a shows a simple example of fully directed factor graph for
three random variables. The graph implies that the joint density for
the model can be factorised as

px1,x2,x3 (x1,x2,x3) = px3 |x1,x2 (x3 | x1,x2) px1 (x1) px2 (x2). (1.38)
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Figure 1.2.: Hierarchical linear regression model factor graph showing ex-
amples of extended factor graph notation.

Figure 1.1b shows a fully undirected factor graph on three random vari-
ables. Ifψi ,j denotes the unnormalised density factor on the pair (xi , xj )

then the graph implies the joint density can be factorised as

px1,x2,x3 (x1,x2,x3) =
1
Z
ψ1,2 (x1,x2)ψ1,3 (x1,x3)ψ2,3 (x2,x3) (1.39)

withZ a normalising constant such that the density integrates to one.

Figure 1.2 shows examples of some additional useful factor graph nota-
tion we will use in this thesis. We use as an example a factor graph
corresponding to a hierarchical linear regression model which will be
discussed in Chapter 5.

It will often be useful to be able to explicitly represent deterministic
functions applied to the random variables in a factor graph. For this
purpose we introduce an additional node type denoted by an un�lled
diamond ( ). The semantics of this node type are similar to standard
directed factor nodes. Variables acting as inputs to the function are con-
nected to the node by undirected edges and the variable corresponding
to the function output indicated by a directed edge from the node to the
relevant variable. Like standard factor nodes, the deterministic factor
nodes only ever connect to variable nodes. The operations performed
by the function on the inputs will usually be included as a label adja-
cent to the node as illustrated by the example in Figure 1.2. A determin-
istic factor node can informally2 be considered equivalent to a directed

2 A Dirac delta is not strictly a density as it is not the Radon–Nikodym derivative
of an absolutely continuous measure, however informally we treat is as the density
of a singular Dirac measure with respect to the Lebesgue measure

∫
f (x ) δ (dx ) '∫

f (x )δ (x ) dx .
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factor node with a Dirac delta conditional density on the output vari-
able which concentrates all the probability mass at the output of the
function applied to the inputs variables.

The deterministic node notation allows generative models consisting
of complex compositions of deterministic functions and probabilistic
sampling operations to be represented in a uni�ed framework. Sub-
graphs of a directed factor graph consisting entirely of deterministic
nodes can be viewed as computation graphs, a graphical formalism typ-
ically used in numerical computing frameworks to support e�cient
automatic di�erentiation algorithms. We exploit this idea in later in the
thesis to allow propagation of derivatives through complex probabil-
istic models and make extensive use of automatic di�erentiation imple-
mentations in frameworks such as Theano [248] in numerical experi-
ments. In Appendix B we provide a short review of the basic concepts
of computation graphs and automatic di�erentiation and a discussion
of their links to directed factor graphs.

In some cases constant values used in a model will be included in a
factor graph as plain nodes indicated only by a label. The x (i ) and c (i )

nodes in Figure 1.2 are an example of this notation.

A commonly used convention in factor graphs is plate notation [50],
with an example of a plate shown by the rounded rectangle bounding
some of the nodes in Figure 1.2. Plates are used to indicate a subgraph
in the model which is replicated multiple times (with the replications
being indexed over a set which is typically indicated in the lower right
corner of the plate as in Figure 1.2). The subgraph entirely contained
on the plate is assumed to be replicated the relevant number of times,
with any edges crossing into the plate from variable nodes outside of
the plate being repeated once for each subgraph replication.

Each of the factors in Figure 1.2 is labelled with a shorthand for a prob-
ability density function corresponding to the conditional or marginal
density factor associated with the node. De�nitions for the shorthand
notations that are used for densities in this thesis are given in Appendix
A. The dependence of the factors on the value of the random variable
the density is de�ned on is omitted in the labels for brevity.

A �nal additional notation used in Figure 1.2 is the use of a shaded
variable node (corresponding to y(i )) to indicate a random variable cor-
responding to an observed quantity in the model.
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x y(n)
px py|x

n ∈ {1 …N }

Figure 1.3.: Factor graph of N observations y(n) independently and identically
distributed according to a distribution with parameters x.

1.3 inference

Having now introduced the tools and notation we use to de�ne probab-
ilistic models, we will now describe the inference problems we consider
approximate approaches to solving in this thesis. We begin with a over-
view of Bayesian inference.

The starting point for any inference problem is to de�ne a model spe- You cannot do

inference without

making assumptions

—David Mackay

cifying proposed relationships between the observed data and unknown
quantities to be inferred. The model codi�es the assumptions we make
about the problem and any prior beliefs we have. In virtually all real
inference problems the model will be a simpli�ed description of a much
more complex underlying process, usually motivated by prior empirical
observations that the behaviour proposed by the model is a reasonable
description of reality. For now we will consider the model as a singular
�xed object we will perform inference with. We consider probabilistic
model comparison in a subsequent subsection.

Amongst the simplest, but also most common, modelling assumptions
made is that the observed data values are independently and identically
distributed (IID) according to a parametric probability distribution. If
we denote the collection of N observed variables {y(n)}Nn=1 then we as-
sume that each is independently generated from a distribution Py(n ) |x =

Py |x ∀n ∈ {1…N} with density py |x =
dPy|x
dµy and governed by a set of

unknown parameters x ∈ X .

Any beliefs we have about the plausible values for the parameters prior
to observing data are integrated into the model by choosing an appro-
priate, typically parametric, marginal distribution Px, with this distri-
bution, and the corresponding density px =

dPx
dµx , referred to as the prior.

The joint density on the model variables then factorises as

py(1) , … ,y(N ) , x (y
(1) , … ,y (N ) , x ) =

N∏

n=1
py |x (y (n) | x ) px (x ) (1.40)
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with this structure illustrated as a directed factor graph in Figure 1.3. In
analogy to the naming of the prior, the conditional distribution on the
unknown model parameters after conditioning on observed data values
is termed the posterior and from the de�nition of conditional density
(1.35) we can express its density as

px |y(1) , … ,y(N ) (x |y (1) , … ,y (N ) ) =

∏N
n=1 py |x (y (n) | x ) px (x )

py(1) , … ,y(N ) (y (1) , … ,y (N ) )
. (1.41)

This expression relating the posterior on the unknown parameters toBayesian inference is

named after Thomas

Bayes, an 18th century

Presbyterian minister,

who proved a special

case of what is now

termed Bayes’ the-

orem. Pierre-Simon

Laplace later

independently derived

a more general

statement of Bayes’

theorem closer to the

modern form.

the prior distribution and model of the observations is an example of
Bayes’ theorem. Typically the product of the conditional densities py |x
is termed the likelihood and considered a function of the value x of the
unknown parameters x, with the observed data values {y (n)}Nn=1 �xed.
The denominator of the right-hand side (1.41), the marginal density on
the observed variables, can be written as a integral marginalising out
the parameters from the joint density

py(1) , … ,y(N ) (y (1) , … ,y (N ) ) =

∫

X

N∏

n=1
py |x (y (n) | x ) px (x ) µx (dx ). (1.42)

This term is often described as themarginal likelihood or themodel evid-A conditional density

pu |v is from the

exponential family if

it can be written as

pu |v (u | v) =
h (u ) exp(η (v )Tt (u ))

z (v ) ,

with η(v) termed the

natural parameters
and t (u) termed the

su�cient statistics.

ence. Generally this integral will not have an analytic solution though
there are exceptions to this in a few special cases. For example if the
densities py |x and px are both of exponential family distributions and
form a conjugate pair such that the posterior density is in the same fam-
ily as the prior density then (1.42) will have a closed-form solution. For
models in which the parameters are discrete the integral in (1.42) cor-
responds to a summation and so is in theory exactly solvable, though
if the total number of possible con�gurations of the parameters is very
large this summation can be infeasible to compute in practice. If the
parameters are instead real-valued but of a low-dimensionality it may
be possible to use numerical quadrature methods [70] to compute the
integral in (1.42) to a reasonable accuracy. Quadrature methods involve
evaluating the integrand across a grid of points and then computing a
weighted sum of these values. For a �xed grid resolution however the
cost of quadrature scales exponentially with the dimension of the space
being integrated over - if G points are used per dimension, for a D di-
mensional parameter space evaluating (1.42) would require summing
the joint density over GD parameter values.



1.3 inference 31

For real-valued parameter spaces of a more than ∼ 10 dimensions3 eval-
uating the model evidence term (1.42) is therefore typically computa-
tionally intractable. We can therefore often only evalulate the posterior
density (1.41) up to an unknown constant. The posterior density itself
is usually not of direct interest as it is only a proxy for describing the
posterior distribution and is dependent on the particular model para-
meterisation chosen. However most quantities of interest from an in-
ference perspective involve integrating functions against the posterior
distribution and as with the model evidence these integrals will typic-
ally be intractable to compute exactly.

For example under an IID assumption the density of the predictive dis-

tribution of a new data point y∗ given the previously observed data is
formed by integrating py |x against the posterior distribution

py∗ |y(1) , … ,y(N ) (y∗ |y (1) , … ,y (N ) )

=

∫

X

py |x (y∗ | x ) px |y(1) , … ,y(N ) (x |y (1) , … ,y (N ) ) µx (dx )

= E
[
py |x (y∗ | x) | y(1) = y (1) , … , y(N ) = y (N )

]
.

(1.43)

If we wish to for example minimise the expected prediction error under
some loss function this will involve integrating against this predictive
distribution and so as a sub-task integrating against the posterior distri-
bution on the model parameters. Similarly evaluating statistics of the
unknown parameters under the posterior such as their mean or cov-
ariance corresponds to computing conditional expectations. In general
any inferential output which takes in to account all of the informa-
tion available from the posterior distribution will involve integrating
against the posterior and so the computation of integrals is the key
computational task in inference.

As exact evaluation of the integrals of interest is usually intractable
we must instead resort to approximate inference methods which trade-
o� an introduction of some level of approximation for an increase in
computational tractability.

3 The C-based implementation by Steven G. Johnson of an adaptive multi-dimensional
quadrature algorithm [25] available at https://github.com/stevengj/cubature re-
commends using the package for integrals of up to around D = 7. Running a provided
test cases for the integral of a Gaussian density across a D-dimensional space with a
target error tolerance of 10−5 took around 2.5 seconds for D = 5, 50 seconds for D = 6
and 17 minutes for D = 7 on one core of a desktop CPU. Extrapolating the ∼ 20-fold
increase in run time per dimension, for D = 10 the run-time would be around 100 days.

https://github.com/stevengj/cubature


32 introduction

x z(n) y(n)
px pz|x py|z,x

n ∈ {1 …N }

Figure 1.4.: Factor graph of a simple hierarchical latent variable model with N
observed variables y(n) each associated with a local latent variable
z(n) , with both observed and latent variables dependent on a set of
global latent variables (parameters) x.

The IID assumption is widely made in inference problems and although
it will not be always be entirely valid in practice, it will often be a reas-
onable approximation. For real-valued parameter spaces X and densit-
ies py |x and px meeting certain regularity conditions, if an IID assump-
tion is valid then the posterior distribution will asymptotically tend to a
multivariate normal distribution as the number of data points N tends
to in�nity [123]. For inference in models of large IID datasets where the
conditions for asymptotic normality are met, while the dimensionality
of the parameter space will often still require the use of approximate
inference methods, the close to normal geometry of the posterior dis-
tribution will typically mean even relatively simple approximate infer-
ence methods can achieve good results.

In this thesis we will primarily be concerned with methods for perform-
ing inference in models which do not �t into this mould. In the follow-
ing subsections we discuss some speci�c issues that can prove chal-
lenging to standard approximate inference approaches and which the
methods contributed in this thesis are intended to help address.

1.3.1 Hierarchical models

In the preceding discussion of inference in a model of a IID dataset, it
was assumed that the only unknown variables in the model were a set
of parameters x, the quantity of which did not depend on the number of
data points N . This structure can be overly restrictive with it common
that the process being modelled includes unknown quantities associ-
ated with each observed variable. Models will therefore often include
local (per data point) latent variables in addition to a set of global latent
variables (or parameters). This grouping structure in the observed and
unobserved variables in a model can extend to multiple levels and such
models often are termed hierarchical or multilevel models.
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A simple example of a hierarchical model is shown as a factor graph in
Figure 1.4. As in the factor graph in Figure 1.3 we assume there are N

observed variables {y(n)}Nn=1 and a vector of global latent variables x.
We further de�neN local latent variables {z(n)}Nn=1 paired with each ob-
served variable. In Figure 1.4 we assume each pair of local latent and ob-
served variables (z(n) , y(n) ) are conditionally independent of the other
pairs {z(m) , y(m)}m,n given the global latent variables z. More complex
structures are also common - for example dynamical state space models
for time series data assume dependencies between the latent variables
corresponding to adjacent time points.

Although powerful, the introduction of local latent variables in to mod-
els can signi�cantly increase the complexity of inference. At a basic
level, as the number of unobserved variables is now dependent on the
data set size, the total dimensionality of the space which needs to be in-
tegrated over when performing inference will typically be much higher
than for models with a �xed number of parameters. This means the
need for inference methods which scale well with dimensionality is
even more essential. The growth of the the number of unobserved vari-
ables with the data set size N will typically also mean that we can no
longer expect asymptotic normality of the full posterior. Often the pos-
terior distribution on the local and global latent variables will have a
complex geometry, with strong dependencies between the global and
local latent variables that can limit the performance of many standard
approximate inference approaches [36].

In some cases the posterior distributions of the local latent variables
associated with the observed data will not be of direct interest to the
downstream task. For example the conditional independence structure
in Figure 1.4 means that the predictive distribution on a new unseen
datapoint y∗ given the observed data has density

py∗ |y(1) , … ,y(N ) (y∗ |y (1) , … ,y (N ) )

=

∫

Z

∫

X

py |x,z (y∗ | x ,z) pz |x (z | x )

px |y(1) , … ,y(N ) (x |y (1) , … ,y (N ) ) µx (dx ) µz (dz).

(1.44)

Predictions under the model will therefore not depend on the values
of the local latent variables {z(n)}Nn=1, and so ideally we would mar-
ginalise out these variables from the full posterior distribution on all



34 introduction

y0 ∼ N (· | ν ,Ψ )
x ∼ N (· | µ,Σ )
for t ∈ {1 . . .T} do

nt−1 ∼ N (· | 0, I)
yt ← yt−1 +hm(yt−1,x ) − h

2 s (yt−1,x ) � ∂s
∂y (yt−1,x )

yt ← yt +
√
h s (yt−1,z) � nt−1 + h

2 s (yt−1,x ) � ∂s
∂y (yt−1,x ) � n2

t−1

(a) Pseudo-code for Milstein method integration of SDE model.

y0

N (ν ,Ψ )

y1

n0N (0, I)

y2

n1N (0, I)

y3

n2N (0, I)

xN (µ , Σ )

(b) Directed factor graph of 3 time steps of SDE simulation.

Figure 1.5.: Example of a simulator model corresponding to Milstein method
integration of a set of SDEs, dy(t ) =m(y(t ), x) dt + s (y(t ), x) dn(t ),
speci�ed as pseudo-code in (a) and a directed factor graph in (b). The
dynamics of model are governed by parameters x. In the pseudo-
code the notation ∼ followed by a distribution shorthand represents
generating a value from the associated distribution.

unobserved variables Pz(1) , … ,z(N ) ,x |y(1) , … ,y(N ) to obtain the posterior dis-
tribution on just the global latent variables Px |y(1) , … ,y(N ) . The distribu-
tion Px |y(1) , … ,y(N ) is de�ned on a much lower dimensional space and will
often have a simpler geometry which makes it more amenable to ap-
proximate inference methods, however generally the marginalisation
over the local latent variables will not be analytically tractable. We can
in some cases however approximately marginalise out the local latent
variables - we discuss methods based on this idea in Chapter 3.

1.3.2 Simulator models

The probabilistic models considered so far have been de�ned by expli-
citly specifying a density over the all the variables in the model, for
example via a factor graph. Rather than de�ning the density on the
variables in a model an alternative approach is for a process for gener-
ating values for the variables in a model to be speci�ed procedurally
in code, with the resulting joint density on the model variables then
only implicitly de�ned. Such models are sometimes termed simulator

or implicit models [77].
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y

x1

x2

N (0, 1)

N (0, 1)

x1x2
(1 + exp x1 ) (1 + exp x2 )

(a) Directed factor graph for model
with two latent variables (x1, x2),
and an observed variable y.

−5 5

−5

5

x1

x2

px1 ,x2
y = 1

(b) Plot of marginal density on latent
variables (contours) and set of val-
ues for which y = 1 (green curve).

Figure 1.6.: Simple example of an implicit probabilistic model where the ob-
served variable is a non-bijective function of two latent variables.

A common setting in which such models occur is the simulation of a
mechanistic model of a physical process for example described by a set
of stochastic di�erential equations (SDEs). In implementations of such
simulator models, the stochasticity in the model will be introduced via
draws from a pseudo-random number generator. Given these random
inputs, the output of the simulator is then calculated as a series of de-
terministic operations and so can be described by a computation graph.
The overall composition of directed factor nodes specifying the gener-
ation of random inputs from known densities by the random number
generator and computation graph describing the operations performed
by the simulator code together therefore de�ne a directed factor graph.
An example of a simulator model corresponding to approximate integ-
ration of a set of SDEs using the Milstein method [175] is shown as both
pseudo-code and a directed factor graph in Figure 1.5.

The main complicating factor in performing inference in simulator mod-
els is the unavailability of an explicit density function on the model
variables which is a prerequisite for most approximate inference meth-
ods. Computing a density function on the unobserved variables to be
inferred (for example parameters of the dynamics of a SDE model) and
simulated observed variables that are conditioned on requires that all
other random variables used in the model are marginalised over. In
some cases this marginalisation may technically be possible to exactly
solve and so a density function possible to compute in theory but the
complexity of the model structure means that the density is unavailable
in practice.
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s1 s2 s3 s4 s5

exp(b1s1 ) exp(b2s2 ) exp(b3s3 ) exp(b4s4 ) exp(b5s5 )

exp(s1W12s2 ) exp(s1W13s3 ) exp(s2W23s3 ) exp(s2W24s4 ) exp(s3W34s4 ) exp(s3W35s5 ) exp(s4W45s5 )

exp(s1W14s4 ) exp(s1W15s5 ) exp(s2W25s5 )

Figure 1.7.: Five unit Boltzmann machine factor graph.

In many cases however the density function may not be exactly evalu-
able even in theory. A key di�erence of simulator models from the prob-
abilistic models considered previously is that the observed variables in
the model are de�ned via deterministic transformations of other ran-
dom variables. Using our above intuition that any simulator model can
be expressed as a directed factor graph with deterministic factor nodes,
this means that the observed variables in the graph correspond to the
outputs of deterministic factors rather than the more usual case of the
observed variables being connected to probabilistic factors.

An illustration of such a case for a simple three variable model is shown
in Figure 1.6. Here the observed variable y is a deterministic function of
two latent (unobserved) variables x1 and x2. There is no analytic solu-
tion in terms of elementary functions for x1 as a function of y and x2 or
for x2 as a function of x1 and y. This means the Dirac delta term corres-
ponding to the deterministic factor cannot be integrated out. Due to the
presence of the Dirac delta the joint density py,x1,x2 is not well de�ned
(the joint distribution Py,x1,x2 is not absolutely continuous with respect
to the Lebesgue measure) which complicates evaluations of conditional
expectations such as E[f (x1, x2) | y = 1]. In particular the set of x1 and
x2 values corresponding to solutions to y = y for an particular y (illus-
trated fory = 1 as the green curve in Figure 1.6b) is an implicitly de�ned
manifold (here a one-dimensional curve) in the x1–x2 space with zero
Lebesgue measure, and the conditional distribution Px1,x2 |y has support
only on this manifold. We explore methods for performing inference in
implicit models in Chapter 4.
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1.3.3 Undirected models

When introducing factor graphs we stated that factors can be both dir-
ected and undirected. In the preceding discussion we concentrated on
directed models, both in the form of models explicitly speci�ed via dir-
ected factor graphs as in the examples in Figure 1.3 and 1.4, and sim-
ulator models which as we argued in the previous subsection can be
considered as implicitly de�ning a directed factor graph. A key de�n-
ing feature of models corresponding to directed factor graphs is that
they are natural descriptions of generative processes, with independ-
ent sampling from the joint distribution across model variables typic-
ally simple to perform via ancestral sampling (in the case of simulator
models this being their de�ning feature).

Undirected models (which we will use here to mean models speci�ed
by factor graphs consisting solely of undirected factors) o�er a comple-
mentary approach for de�ning a probabilistic model. Each undirected
factor node is associated with a non-negative function de�ning a factor
in the joint density across all model variables. Unlike a directed factor,
this function does not correspond to a conditional or marginal density.
Instead it describes a more general notion of ‘compatibility’ between
the values of sets of variables in the model, de�ning a series of soft
constraints as to which joint con�gurations are plausible (correspond-
ing to a high value for the factor) or implausible (corresponding to a
low value). This makes undirected models a natural representation for
models of systems of mutually interacting components without a spe-
ci�c directivity in those interactions. For example they are commonly
used in models of images to represent dependencies between pixel val-
ues, to model networks of stochastically spiking neurons in the brain
and models of magnetic interactions in particle lattices. Unlike direc-
ted models, generating samples from the joint distribution on variables
in an undirected model is typically a non-trivial task, with no general
equivalent to ancestral sampling.

A particularly common form of undirected model is the Boltzmann ma-

chine [1] also known as a pairwise binary Markov random �eld [138] or
in statistical physics settings an Ising spinmodel [133]. A Boltzmann ma-
chine consists of a set of binary random variables s = [s1 · · · sD ]T; these
are typically chosen to take values in U = {0, 1}D or S = {−1,+1}D - we
will favour S = {−1,+1}D . The joint distribution across the variables
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is parameterised by a symmetric weight matrixW ∈ RD×D and a bias
vector b ∈ RD and de�ned as

ps (s ) =
1
Z
exp

( 1
2s

TWs + sTb
)
, Z =

∑

s ∈S
exp

( 1
2s

TWs + sTb
)
. (1.45)

Evaluation of the normalising constant Z involves a summation over
2D states and so for large D quickly become intractable to compute
exactly. Evaluation of expectations with respect to the Boltzmann ma-
chine distribution also involves an exhaustive summation across S and
so will also be intractable for high D.

If s1 and s2 are an arbitrary partition of the variables in s then import-
antly the conditional distribution Ps1 |s2 will also be a Boltzmann ma-
chine distribution. However unless the dimensionality of s1 is small
enough that exhaustive summation over its possible states is feasible,
then evaluating normalising constants of this conditional distribution
and expectations with respect to it will also be intractable. Therefore
inference in Boltzmann machines conditioned on observations of part
of the state can be considered as a special case of computing expect-
ations and the normalising constants of (non-conditioned) Boltzmann
machine distributions, with the same challenges applying to both.

Figure 1.7 shows the factor graph for a Boltzmann machine distribu-
tion on �ve binary random variables {si}5i=1. Each of the weights Wi j

de�nes an undirected factor between a pair of variables siWi jsj . As the
variables take on signed binary values, this factor is equal toWi j when
the variables are equal and so take the same sign and equal to −Wi j

when the variables take di�ering values. If Wi j is positive this factor
therefore favours states where si and sj are in the same con�guration,
while ifWi j is negative states with si and sj in opposing con�gurations
are preferred.

Boltzmann machine systems with a mixture of positive and negative
weights will often be frustrated with no one global con�guration which
satis�es the preferences speci�ed by each weight, and instead there
being multiple states which each locally satisfy a subset of the soft
constraints speci�ed by the weights. This typically leads to a highly
multi-modal distribution on the states of the system, with collections
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of nearby4 states of high-probability separated sets of states with very
low probability.

This multi-modality typically makes frustrated Boltzmann machines
very challenging distributions to perform approximate inference with.
In particular methods based on constructing Markov chains which ex-
plore the state of the system tend to converge very slowly as they will
typically remain con�ned to a particular high-probability region of the
state space for many iterations. In Chapter 5 we will consider methods
for constructing Markov chains with improved exploration of challen-
ging multi-modal target distributions, including methods for estimat-
ing expectations and normalising constants of frustrated Boltzmann
machine distributions.

1.3.4 Model comparison

So far we have discussed inferring the unobserved variables in a single
�xed model. An important second level of inference is comparing com-
peting models for the same observed data. This can be treated consist-
ently within the probabilistic framework we have discussed.

Given observed data, we would like to be able to make a judgement Ockham’s Razor is a

philosophical

principle, commonly

attributed to the 14th

century Franciscan

friar William of

Ockham, that states if

there exist multiple

explanations for

observations, all else

being equal we should

prefer the simplest.

as to which of two (or more) proposed models better describes the
data. To be useful this comparison must take into account the relative
complexity of the models; a model with more free variables will gener-
ally be able to �t observed data more closely, however Ockham’s Razor

(and corresponding empirical evidence of the loss of predictive power
of overly complex models) suggests we should prefer simpler models
where possible. By marginalising over the free, unobserved variables in
a model, probabilistic model comparison automatically embodies Ock-
ham’s Razor [161].

A concrete structure for model comparison is to assume that there are a
�nite set of M models, indexed by an indicator variable m ∈ {1 . . .M}.
All models share the same observed variables5 y, and there are a set
of per model vectors of unobserved variables {xm}Mm=1 which are as-
sumed to be independent (before conditioning on observations). More
complex structures could be assumed such as the models sharing a set

4 Nearby here being in terms of the Hamming distance between the binary states.
5 For notational simplicity here we assume all observed variables have been concatenated

in to one vector and similarly for the unobserved variables, with any internal model
factorisation structure such as discussed in the preceding sections omitted.
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of common unobserved variables, however we only consider the case of
independent models here. The joint density on the observations, model
indicator and latent variables is then assumed to factorise as

py,m,x1, … ,xM (y,m,x 1, … ,xM ) =

py |m,xm (y |m,xm ) pm (m)
M∏

n=1
pxn (xn ).

(1.46)

The marginal density on the model indicator pm represents our prior
beliefs about the relative probabilities of the models before observing
data. Importantly the value of the model indicator variable m selects
the relevant per model conditional density on the observed variables
given latent variables py |m,xm ; this represents the assumption that con-
ditioned on the model indicator assuming a particular model index m

the observed variables are conditionally independent of the latent vari-
ables of all other models y ⊥ {xn}n,m |m =m.

Given this computational set up, the task in model comparison is then
to compute the relative probabilities of each of the models given ob-
served data. These probabilities are given by

pm |y (m |y) =
py |m (y |m) pm (m)

∑M
n=1

(
py |m (y | n) pm (n)

) , (1.47)

which can be seen as a direct analogue to Bayes’ theorem for the pos-
terior density on unobserved random variables for a single model. The
key quantities needed to evaluate the model posterior probabilities are
the marginal densities py |m (y |m) evaluated at the observed data. Com-
puting these values requires marginalising out the unobserved vari-
ables from the per model joint densities py,xm |m

py |m (y |m) =

∫

Xm

py |m,xm (y |m,x )pxm (x ) dx . (1.48)

This value is equivalent to the denominator in Bayes’ theorem (1.42),
this explaining the naming of this term as the model evidence.

As described previously, evaluating the model evidence requires integ-
rating across the space of all unobserved variables. The key computa-
tional challenge in being able to perform probabilistic model compar-
ison with complex high dimensional models is therefore again being
able to e�ciently to compute integrals in high dimensional spaces. Un-
like the integrals required for making predictions using a single model
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however, the model evidence integral cannot be naturally expressed
as an expectation of a function with respect to the posterior distribu-
tion. This can complicate approximate computation of model evidence
terms compared to other quantities involved in inference. In Chapter 5
we will consider extensions to a class of methods proposed for estimat-
ing model evidence terms.

A common criticism of the model comparison framework we have de-
scribed is that the model posterior probabilities pm |y can be highly sens-
itive to the choice of the prior distribution placed on the unobserved
per-model variables Pxm [2, 136]. Within the context of Bayesian infer-
ence the prior distribution is often viewed as a distinct entity from the
observation model Py |m,xm , with the prior understood as encoding our
beliefs about the unobserved variables xm before observing data. That
the model evidence terms and so model posterior can be sensitive to the
speci�c choices of prior distributions is therefore viewed as a disadvant-
age as the priors are viewed as being somewhat arbitrary or subjective.
This in turn means the model posterior probabilities are similarly sub-
jective and this subjectivity is viewed as inherently undesirable.

In our opinion this criticism is ill-founded. All inferences are inherently
subjective. Both the observation model and prior are based on assump-
tions about a problem [95] and it is their combination which de�nes an
overall generative model which we use to perform inference with. A
prior distribution can only be interpreted in the context of the obser-
vation model it is combined with [99] and is no more or less subjective
than that observation model. If it is reasonable for the model posterior
to be sensitive to the choice of the observation model, it therefore seems
equally reasonable (and can be argued to be desirable [258]) for it to
be sensitive to the choice of prior. If a practitioner is worried about a
deleterious e�ect of arbitrarily chosen priors on the quality of model
comparison results, this could be argued to be re�ective of a need to
improve the choice of prior rather than indicating an issue in the infer-
ence framework.

A further criticism levelled at probabilistic model comparison (and prob-
abilistic modelling more generally) is the potential di�culties in inter-
preting inferences under a setting of model misspeci�cation, i.e. when
the generative model (or models) used to perform inference does not
match the true data generating process. Bernardo and Smith proposed
the nomenclature of M-closed to refer to model comparison under a
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setting in which the list of models being compared includes the ‘true’
model describing the data generating process as a member, and M-open

for the case in which the ‘true’ model is not included [24, §6.1.2]6. The
model posterior probabilities pm |y can be interpreted in an M-closed set-
ting as degrees beliefs of which of the set of models is the true model,
however their intepretation in the M-open case is less clear.

As commented in the introduction to this section, virtually all models
are simpli�cations of much more complex processes, so in this sense
inference with misspeci�ed models and model comparison in an M-
open setting is the norm. In [24], Bernardo and Smith suggest reposing
model comparison as a decision problem in maximising the expecta-
tion of a utility function, for example the accuracy of predictions about
future observations. Various alternatives have been proposed to the
model comparison framework described above based on this idea, for
example using cross-validation to estimate predictive accuracy of mod-
els on held-out data [63]. The use of nonparameteric models which are
su�ciently �exible able to arbitarily closely approximate the underly-
ing data generating process (given su�cient data) as a proxy reference
model has also been proposed [120, 155].

Although the issue of interpretation of inferences under model misspe-
ci�cation is important from both a philosophical and practical perspect-
ive, in this thesis we concentrate solely on the computational aspects of
inference, and we will assume being able to (approximately) compute
model evidence integrals is at least in some cases desirable without
making any claims to the validity of the probabilistic model comparison
framework in a particular setting. Further though we have motivated
the computation of model evidence integrals within a setting of com-
paring multiple models, we will only directly consider computation of
model evidence terms for a single model, with the implicit assumption
that this could be repeated for all models of interest to allow (in conjuc-
tion with speci�cation of prior probabilities on the models) estimation
of the model posterior probabilities.

6 A third alternative M-completed is also de�ned for the case where the true model is
known but not included in set of models being compared due to being computational
intractable or non-interpretable.
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1.4 summary

Probabilistic modelling o�ers a natural way to formalise our beliefs
and assumptions about a problem and make inferences given those be-
liefs. Once a model has been de�ned the theoretical basis of the infer-
ence process is elegantly simple. Underlying this simplicity however
are some very signi�cant implementation challenges. The key com-
putational task is the evaluation of integrals across high-dimensional
spaces, which typically do not have closed form solutions and are in-
tractable to compute using standard numerical integration approaches.

This intractability necessitates the use of approximate inference meth-
ods, the focus of this thesis. In particular we propose several novel ex-
tensions to MCMC methods, a class of approaches for drawing depend-
ent samples from high-dimensional target distributions. In the next
chapter we review the basic Monte Carlo method for integration and as-
sociated methods for generating and using independent pseudo-random
variates to estimate integrals. We then introduce the key Markov chain
theory underlying MCMC methods and review some key existing MCMC

algorithms. We will then conclude with an outline of the remainder of
the thesis, in particular giving a a summary of the novel contributions
made and how these relate to the speci�c inference problems discussed
in the last section of this chapter.
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2 A P P R O X I M AT E I N F E R E N C E

In the previous chapter we argued that the key computational chal-
lenge in performing inference in probabilistic models is being able to
evaluate integrals with respect to probability distributions de�ned on
high-dimensional spaces. Generally these integrals will not have ana-
lytic solutions and for models with even moderate numbers of unob-
served variables, numerical quadrature approaches to evaluating integ-
rals are computationally infeasible.

In this chapter we will review some of the key algorithms proposed Truth is much too

complicated to allow

anything but

approximations.

—John von Neumann

for computing approximate solutions to inference problems. A unifying
aspect to all of these methods is trading o� some loss of the accuracy of
the answers provided to inferential queries, for a potentially signi�cant
increase in computational tractability. The literature on approximate

inference methods is vast and so necessarily this chapter will only be a
partial review of the methods directly relevant to this thesis.

Approximate inference methods can be roughly partitioned into two
groups: methods in which integrals with respect to the target distribu-
tion are estimated by averaging over samples from a distribution over
the target space and those in which a more tractable approximation to
the target distribution is found by optimising the approximation to be
‘close’ to the target distribution. In this chapter we will concentrate on
the sampling-based approaches to approximate inference.

In particular we will focus on Markov chain Monte Carlo (MCMC) meth-
ods, as these form the key basis for the contributions discussed in later
chapters. We will review the key theory underlying Monte Carlo in-
tegration and MCMC methods and some of the standard algorithms for
implementing these approaches. We will conclude with a discussion
of auxiliary variable MCMC methods which are central to the methods
discussed in the remainder of this thesis.

Although they are not the main focus of this thesis we will make use of
several optimisation-based approximate inference methods within the
algorithms discussed in the following chapters. We review the ideas
underlying these methods in Appendix C.

45
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2.1 monte carlo methods

Inference at both the level of computing conditional expectations of
unobserved variables in a model and in evaluating evidence terms to
allow model comparison involves integrating functions against a prob-
ability distribution. Typically the distribution of interest will be de�ned
by a probability density with respect to a base measure. Therefore we
wish to be able to compute integrals of the form

∫

X

f (x ) P (dx ) =
∫

X

f (x ) p (x ) µ (dx ) (2.1)

where p is the density of a target distribution P on a space X with re-
spect to a base measure µ and f is a measurable function. For instance
in the case of computing the posterior mean in a Bayesian inference
problem with observed variables y and latent variables x where the
posterior density px |y is de�ned with respect to the D-dimensional Le-
besgue measure, we would have p (x ) = px |y (x |y) for an observed
y, µ (x ) = λD (x ) and f (x ) = x . Often we will only be able to evalu-
ate p up to an unknown normalising constant i.e. p (x ) = 1

Z p̃ (x ) with
we able to evaluate p̃ pointwise but Z intractable to compute. For ex-
ample in a Bayesian inference setting p̃ (x ) would be the joint density
px,y (x ,y) and Z the model evidence py (y). When performing inference
in undirected models, we would instead have that p̃ is the product of
unnormalised factors and Z the corresponding normaliser.

2.1.1 Monte Carlo integration

The framework that uni�es all of the methods we will discuss in thisThe eponym of the

Monte Carlo method

is a Monocan casino,

favoured haunt of the

uncle of Stanisław

Ulam, one of the

method’s inventors.

section is the Monte Carlo method for integration [256]. Let x be a ran-
dom vector distributed according to the target distribution i.e. Px = P .
Given an arbitrary measurable function f : X → R we de�ne a ran-
dom variable f = f (x). Our task is to compute expectations E[f] = f̄

corresponding to the integral (2.1). We assume that E[f] exists and both
E[f] and V [f] are �nite. For now we assume we have a way of generat-
ing values of N random variables {xn}Nn=1, each marginally distributed
according to the target distribution i.e. Pxn = P ∀n ∈ 1 . . .N but poten-
tially not independent of each other. We de�ne random variables

fn = f (xn ) ∀n ∈ {1 . . .N} and f̂N =
1
N

N∑

n=1
fn . (2.2)
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Due to linearity of the expectation operator, we have that

E
[
f̂N

]
=

1
N

N∑

n=1
E[fn ] =

1
N

N∑

n=1
f̄ = f̄ (2.3)

and so that in expectation f̂N is equal to f̄ , i.e. realisations of f̂N are
unbiased estimators of f̄ . Note that this result does not require any in-
dependence assumptions about the generated random variables. Now
considering the variance of f̂N we can show that

V
[
f̂N

]
=

V [f]
N

*,1 +
2
N

N−1∑

n=1

n−1∑

m=1

C[fn , fm ]
V [f]

+-. (2.4)

If the generated random variables {xn}Nn=1 and so {fn}Nn=1 are inde-
pendent, then C[fn , fm ] = 0 ∀m , n. In this case (2.4) reduces to
V

[
f̂N

]
= V [f]/N , i.e. the variance of the Monte Carlo estimate f̂N for f̄

is inversely proportional to the number of samples N . Importantly this
scaling does not depend on the dimension of x.

Therefore if we can generate a set of independent random variables
from the target distribution, we can estimate expectations that asymp-
totically tend to the true value as N increases, with a typical deviation
from the true value (as measured by the standard deviation, i.e. the
square root of variance) that is O

(
N −

1
2
)
. In comparison a fourth-order

quadrature method such as Simpson’s rule has an error that is O
(
N −

4
D
)

for a grid of N points uniformly spaced across a D dimensional space.
Asymptotically for D > 8, Monte Carlo integration will therefore give
better convergence than Simpson’s rule, and even for smaller dimen-
sions large constant factors in the Simpson’s rule dependence can mean
Monte Carlo performs better for practical N .

Note that computing Monte Carlo estimates from independent random
variables is not optimal in terms of minimising V

[
f̂N

]
for a given f ; the

covariance terms in (2.4) can be negative which can reduce the overall
variance. A wide range of variance reduction methods have been pro-
posed to exploit this and produce lower variance of Monte Carlo estim-
ates for a given f [143]. Although these methods can be important in
practice for achieving an estimator with a practical variance for a spe-
ci�c f of interest, we will generally concentrate on the case where we
do not necessarily know f in advance.
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Figure 2.1.: Binary representation of linear congruential generator sequence
sn+1 = 37sn + 61 mod 128. Columns left to right represents suc-
cessive integer states in sequence. From least signi�cant (bottom)
to most signi�cant (top), the bits in each column have patterns
repeating with periods 2, 4, 8, 16, 32, 64, 128.

2.1.2 Pseudo-random number generation

Virtually all statistical computations involving random numbers in prac-The generation of

random numbers is

too important to be

left to chance.

—Robert R. Coveyou

tice make use of pseudo-random number generators (PRNGs). Rather than
generating samples via a truly random process1, PRNGs produce determ-
inistic sequences of integers in a �xed range that nonetheless maintain
many of the properties of a random sequence. In particular through
careful choice of the updates, sequences with a very long period (num-
ber of iterations before the sequence begins repeating), a uniform dis-
tribution across the numbers in the sequence range and low correlation
between successive states can be constructed.

A very simple example of a class of PRNGs is the linear congruential

generator [149] which obeys the recurrent update

sn+1 = (asn + c ) mod m with 0 < a < m, 0 ≤ c < m, (2.5)

with a, c and m integer parameters. If a, c and m are chosen appropri-
ately, iterating the update (2.5) from an initial seed 0 ≤ s0 < m, will
produce a sequence of states which visits all the integers in [0,m) before
repeating. An example state sequence withm = 128 is shown in Figure
2.1. In practice, linear congruential generators produce sequences with
poor statistical properties, particularly when used to generate random
points in high dimensional spaces [166], hence most modern numer-
ical computing libraries use more robust PRNGs such as the Mersenne-

Twister [167], which is used in all experiments in this thesis.

The raw output of a PRNG is an integer sequence, with typically the
sequence elements uniformly distributed over all integers in a range
[0, 2n ) for some n ∈ N. All real values are represented at a �nite pre-
cision on computers, typically using a �oating point representation [11]
of single (24-bit mantissa) or double (53-bit mantissa) precision. Through

1 We consider a true random process as one in which it is impossible to precisely predict
the next value in the sequence given the previous values.
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Figure 2.2.: Visualisation of Box–Muller transform. Left axis shows uniform
grid on U = [0, 1]2 and right-axis shows grid points after mapping
through д in transformed space X = R2.

an appropriate linear transformation, the integer outputs of a PRNG can
be converted to �oating-point values uniformly distributed across a
�nite interval. PRNG implementations typically provide a primitive to
generate �oating-point values uniformly distributed on [0, 1). Given the
ability to generate sequences of (e�ectively) independent samples from
a uniform distributionU (0, 1), the question is then how to use these to
produce random samples from arbitrary densities.

2.1.3 Transform sampling

Samples from many standard distributions can be generated by exploit-
ing the transformation of random variables relationships discussed in
1.1.4. Let u be a D-dimensional vector of independent random variables
marginally distributed according to U (0, 1) and д : [0, 1)D → X be
a di�eomorphism with X ⊆ RD . If we de�ne x = д(u), then by the
change of variables formula (1.22) we have that

px (x ) =
�����
∂д−1 (x )
∂x

�����. (2.6)

For example for D = 2, X = R2 and a bijective map д de�ned by

д*.,
u1

u2

+/- =

√−2 logu1 cos(2πu1)
√−2 logu1 sin(2πu2)

 , д
−1*.,

x1

x2

+/- =

exp

(
− 1

2 (x
2
1 + x

2
2 )

)

1
2π arctan

(
x1
x2

)
 ,

then we have that the density of the transformed x = д(u) is

px (x ) =
1√
2π

exp
(
−x

2
1
2

)
1√
2π

exp
(
−x

2
2
2

)
, (2.7)
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i.e. x1 and x2 are independent random variables with standard normal
distributionsN (0, 1). This is the Box–Muller transform [48], and allows
generation of independent standard normal variables given a PRNG prim-
itive for sampling from U (0, 1). A visualisation of the transformation
of space applied by the method is shown in Figure 2.2.

A general method for sampling from univariate distributions is to use
an inverse cumulative distribution function (CDF) transform. For a prob-
ability density p on a scalar random variable, the corresponding CDF

r : R→ [0, 1] is de�ned as

r (x ) =

∫ x

−∞
p (v) dv =⇒ ∂r (x )

∂x
= p (x ). (2.8)

If u is a standard uniform random variable and x = r−1 (u) then

px (x ) =
�����
∂r (x )

∂x

����� = p (x ). (2.9)

To be able to use the inverse CDF transform method we need to be
able to evaluate r−1, sometimes termed the quantile function. Often
neither the CDF or quantile function of a univariate distribution will
have closed form solutions however we can use polynomial approxim-
ation methods and iterative solvers to evaluate both to arbitrary preci-
sion [197]. For some distributions such as the standard normal N (0, 1)
even though the CDF and quantile function do not have analytic forms
in terms of elementary functions it is common for numerical comput-
ing libraries to provide approximations to both which are accurate to
within small multiples of machine precision. Although the inverse CDF

transform method gives a general recipe for sampling from univariate
densities, it is not easy to generalise to multivariate densities and altern-
atives can be simpler to implement and more numerically stable.

2.1.4 Rejection sampling

An important class of generic sampling methods, particularly due their
use as a building block in other algorithms, is rejection sampling [193].
Rejection sampling uses the observation that to sample from a distri-
bution with density p : X → [0,∞) it is su�cient to uniformly sample
from the volume under the graph of (x ,p (x )).

The key requirement in rejection sampling is to identify a proposal dis-

tribution Q which we can generate independent samples from and has
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Figure 2.3.: Visualisation of rejection sampling. The green curve shows the
(unnormalised) target density p̃, the green region underneath rep-
resenting the area we wish to sample points uniformly from. The
dashed orange curve shows the scaled proposal density Mq, with
the orange (plus green) region representing the area we uniformly
propose values from. Two example proposals are shown: � is under
the target density and so accepted; ∗ is outside of the green region
and so would be rejected.

Algorithm 1 Rejection sampling.
Input: p̃ : unnormalised target density, q : normalised density of proposal

distribution Q , M : constant such that p̃ (x ) ≤ Mq(x ) ∀x ∈ X .
Output: Independent sample from distribution with density p (x ) = 1

Z p̃ (x ).
1: repeat
2: x ∼ q(·)
3: h ∼ U (· | 0,Mq(x ))
4: until h ≤ p̃ (x )
5: return x

a density q = dQ
dµ that upper bounds the potentially unnormalised tar-

get density p̃ across its full support X when multiplied by a known
constant M , i.e. p̃ (x ) ≤ Mq(x ) ∀x ∈ X . The requirement to be able to
generate independent samples from Q can be met for example by dis-
tributions amenable to transform sampling, e.g. the standard normal.
The second requirement is generally more challenging and as we will
see the e�ciency of rejection sampling methods is very dependent on
how tight the bound can be made.

Algorithm 1 describes the rejection sampling method to produce a single
independent sample from a target distribution. A visualisation of how
the algorithm works for a univariate target distribution is shown in
Figure 2.3. The overall aim is to generate points uniformly distributed
across the green area under the (unnormalised) target density curve.
This is achieved by generating points uniformly under the dashed or-
ange curve corresponding to the scaled proposal density and then ac-
cepting only those which are below the green curve. To generate a point
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Figure 2.4.: Factor graph of rejection sampling process.

under the dashed orange curve we �rst generate an x from the pro-
posal distribution and then generate an auxiliary ‘height’ variable by
sampling uniformly from [0,Mq(x )]. If the sampled height is below the
green curve we accept (as in the � example in Figure 2.3) else we reject
the sample (as in the ∗ example in Figure 2.3).

Figure 2.4 shows the rejection sampling generative process as a directed
factor graph, with x be a random variable representing the proposal, u

the uniform auxiliary variable drawn to sample the ‘height’ and a a
binary variable that indicates whether the proposal is accepted (a = 1)
or not (a = 0). By marginalising out u we have that that

px,a (x ,a) = q(x )
(
p̃ (x )

Mq(x )

)a (
1 − p̃ (x )

Mq(x )

) 1−a
, (2.10)

and further marginalising over the proposal x

pa (a) =
( Z
M

)a (
1 − Z

M

) 1−a
. (2.11)

Conditioning on the proposal being accepted we therefore have that

px |a (x | 1) =
q(x ) p̃ (x )

Mq (x )
Z
M

=
p̃ (x )

Z
= p (x ). (2.12)

Therefore the accepted proposals are distributed according to the tar-
get density as required. Further from (2.11) we have that the pa (1) = Z

M .
This suggests we can use the accept rate to estimate Z but also hints
at the di�culty in �nding a M which guarantees the upper bound re-
quirement as for Z

M to be a valid probability M ≥ Z i.e. M needs to
be an upper bound on the unknown normalising constant Z . This re-
lationship also suggests it is desirable to set M as small as possible to
maximise the acceptance rate.

Although rejection sampling can be an e�cient method of sampling
from univariate target distributions (particularly for distributions with
log-concave densities where adaptive variants are available [106]), it
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generally scales very poorly with the dimensionality of the target dis-
tribution. This is as the ratio of the volume under the target density
to the volume under the scaled proposal density (in terms of Figure
2.3 the ratio of the green area to the green plus orange regions), and so
the probability of accepting a proposal, will tend become exponentially
smaller as the dimensionality increases. This is an example of the so-
called curse of dimensionality. Therefore although rejection sampling
can be a useful subroutine for generating random variables from low-
dimensional distributions, in general it is not a viable option for gener-
ating samples directly for high-dimensional Monte Carlo integration.

2.1.5 Importance sampling

So far we have considered methods for generating samples directly
from a target distribution. Although samples can be of value in them-
selves for giving a representative set of plausible values from the target
distribution (e.g. for visualisation purposes), usually the end goal is to
estimate integrals of the form in (2.1).

Importance sampling [135] is a Monte Carlo method which allows arbit-
rary integrals to be estimated. IfQ is a distribution, with densityq = dQ

dµ ,
which is absolutely continuous with respect to the target distribution
(which requires that p (x ) > 0⇒ q(x ) > 0), then importance sampling
is based on the identity

f̄ =

∫
X
f (x ) p̃ (x ) µ (dx )∫
X
p̃ (x ) µ (dx )

=

∫
X
f (x ) p̃ (x )q (x ) q(x ) µ (dx )∫
X

p̃ (x )
q (x ) q(x ) µ (dx )

. (2.13)

Each of the numerator and denominator in (2.13) take the form of an ex-
pectation of a measurable function of a random variable xwith distribu-
tion Q . Further the denominator is exactly equal to Z =

∫
X
p̃ (x ) µ (dx ).

We therefore have that

Z f̄ = E[w(x) f (x)] and Z = E[w(x)] with w(x ) =
p̃ (x )

q(x )
. (2.14)

If we can generate random variables {xn}Nn=1 each marginally distrib-
uted according to Q we can therefore form Monte Carlo estimates of
both the numerator and denominator. We de�ne ẐN and ĝN as

ẐN =
1
N

N∑

n=1
w(xn ) and ĝN =

1
Ẑ

N∑

n=1
w(xn ) f (xn ). (2.15)
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Figure 2.5.: Visualisation of importance sampling. On both axes the green
curve shows the unnormalised target density p̃, the dashed orange
curve the density q values are sampled from and the dotted violet
curve the importance weighting function w(x ) =

p̃ (x )
q (x ) to estimate

expectations with respect to the target density using samples from
q. In the left axis the q chosen is under-dispersed compared to p̃
leading to very large w values in the right tail. In contrast in the
right axis, the broader q leads to less extreme variation in w.

By the same argument as Section 2.1.1,E
[
ẐN

]
= Z andE[ĝN ] = Z f̄ . We

can therefore use importance sampling to form an unbiased estimate
of the unknown normalising constant Z .

If we de�ne f̂N = ĝN /ẐN , then this is a biased2 estimator for f̄ as
in general the expectation of the ratio of two random variables is not
equal to the ratios of their expectations. However if both the numerator
and denominator have �nite variance, i.e. V

[
ẐN

]
< ∞ and V [ĝN ] < ∞,

then f̂N is a consistent estimator for f̄ i.e. limN→∞ E
[
f̂N

]
= f̄ .

The w(xn ) values are typically termed the importance weights. If a few
of the weights are very large, the weighted sums in (2.15) will be dom-
inated by those few values, reducing the e�ective number of samples
in the Monte Carlo estimates. This can particularly be a problem if the
are regions of X with low probability under q where p (x ) � q(x ). As
sampling points in these regions will be a rare event, a large number of
samples may be needed to diagnose the issue adding further di�culty.
A general recommendation is to use densities q with tails as least as
heavy of those of p, and in general the closer the match between q and
p the better [161, 198]. Figure 2.5 shows a visualisation of the e�ect of
the choice of q on the importance weights.

When previously discussing rejection sampling, we introduced an aux-
iliary binary accept indicator variable, a, associated with each proposed

2 In cases where the normalising constant Z is known, we can instead use w(x ) =
p (x )
q (x )

in which case the ratio estimator is not required and an unbiased estimates can be
calculated. As the problems we are interested in will generally have unknown Z we do
not consider this case further
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sample x (see Figure 2.4). If we generate N independent proposal –
indicator pairs {xn , an}Nn=1 then the number of accepted proposals is
Nacc =

∑N
n=1 an . Conditioned on Nacc being a value more than one, the

generated rejection sampling variables {xn , an}Nn=1 can be used to form
an unbiased Monte Carlo estimate of f̄ using the estimator

f̂ rsN =
∑N

n=1 an f (xn )∑N
m=1 am

, (2.16)

which just corresponds to computing the empirical mean of the accep-
ted proposals i.e. the standard Monte Carlo estimator. In comparison
importance sampling forms a biased but consistent estimator for f̄ from
N samples {xn}Nn=1 from a distribution Q using the estimator

f̂ isN =
∑N

n=1 w(xn ) f (xn )∑N
m=1 w(xm )

. (2.17)

From this perspective the accept indicators an in rejection sampling
can be seen to act like binary importance weights, in contrast import-
ance sampling using ‘soft’ weights which mean all sampled xn make a
contribution to the estimator (assuming w(x ) , 0 ∀x ∈ X ). However
this correspondence is only loose. The rejection sampling estimator f̂ rsN
is unbiased unlike f̂ isN , but this unbiasedness relies on conditioning on
a non-zero value for Nacc (i.e. the number of accepted samples to gener-
ate) and continuing to propose points until this condition is met. In con-
trast importance sampling generates a �xed number of samples from
Q and does not use any auxiliary random variables.

Unlike rejection sampling, there is no need in importance sampling for
q to upper-bound the target density. This allows more freedom in the
choice of q however it is still important to choose q to be as close as pos-
sible to the target while remaining tractable to generate samples from.
In general for target densities de�ned on high-dimensional spaces, it
can be di�cult to �nd an appropriate q such that the variation in im-
portance weights is not too extreme [161].

2.2 markov chain monte carlo

When introducing the Monte Carlo method we saw that is was not ne-
cessary for the random variables used in a Monte Carlo estimator to
be independent. While it can be impractically computationally expens-



56 approximate inference

x0
q

x1

⇀
t 1 (x0)

x2

⇀
t 2 (x1)

x3

⇀
t 3 (x2)

x4

⇀
t 4 (x3)

Figure 2.6.: Markov chain factor graph. The initial state x0 is sampled according
to a density q and each subsequent state xn is then generated from
a transition density ⇀

t n conditioned on the previous state xn−1.

ive to generate independent samples from complex high-dimensional
target distributions, simulating a stochastic process which converges
in distribution to the target and produces a sequence of dependent ran-
dom variables is often a more tractable task. This is the idea exploited
by Markov chain Monte Carlo (MCMC) methods.

A Markov chain is an ordered sequence of random variables {xn}Nn=0
which have the Markov property — for all n ∈ {1 . . .N}, xn is condi-
tionally independent of {xn}m<n−1 given xn−1. This conditional inde-
pendence structure is visualised as a factor graph in Figure 2.6.

For a Markov chain de�ned on a general measurable state space (X ,F ),
the probability distribution of a state xn given the state xn−1 is speci�ed
for each n ∈ {1 . . .N} by a transition operator, ⇀

Tn : F × X → [0, 1]. In
particular the transition operators de�ne a series of regular conditional
distributions for each n ∈ {1 . . .N}

Pxn |xn−1 (A | x ) =
⇀
Tn (A | x ) ∀A ∈ F , x ∈ X . (2.18)

We will often assume that the chain is homogeneous, i.e. that the same
transition operator is used for all steps ⇀

Tn =
⇀
T ∀n ∈ {1 . . .N}.

The key property required of a transition operator for use in MCMC

methods is that the target distribution P is invariant under the trans-
ition, that is it satis�es

P (A) =

∫

X

⇀
T (A | x ) P (dx ) ∀A ∈ F , (2.19)

The invariance property means that if a chain state xn is distributed ac-
cording to the target P , all subsequent chain states xn+1, xn+2 . . . will
also be marginally distributed according to the target. Therefore given
a single random sample x0 from the target distribution, a series of de-
pendent states marginally distributed according to the target could be
generated and used to form Monte Carlo estimates of expectations.
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Being able to generate even one exact sample from a complex high-
dimensional target distribution is generally infeasible. Importantly how-
ever the marginal distribution on the chain state Pxn of a Markov chain
with a transition operator which leaves the target distribution invariant
will converge to the target distribution irrespective of the distribution
of the initial chain state if the target distribution is the unique invariant
distribution of the chain.

To have a unique invariant distribution, a chain must be irreducible and
aperiodic [250]. For a chain on a measurable space (X ,F ), irreducibility
is de�ned with respect to a measure ν , which could but does not neces-
sarily need to be the target distribution P . A chain is ν-irreducible if
starting at any point in X there is a non-zero probability of moving to
any set with positive ν-measure in a �nite number of steps, i.e.

∀x ∈ X , A ∈ F : ν (A) > 0 ∃m ∈ Z+ : Pxm |x0 (A | x ) > 0. (2.20)

A chain is periodic (and aperiodic otherwise) if disjoint regions of X
are visited cyclically, i.e. there exists an integer r > 1 and an ordered
set of r disjoint P-positive subsets of X , {Ai}ri=1 such that ⇀

T (Aj | x ) =
1 ∀x ∈ Ai , i ∈ {1 . . . r}, j = (i + 1) mod r .

If we can construct a ν-irreducible and aperiodic Markov chain {xn}Nn=0
which has the target distribution P as its invariant distribution, then a
MCMC estimator f̂N = 1

N
∑N

n=1 f (xn ) converges almost surely as N →
∞ to f̄ =

∫
X
f dP for all starting states except for a ν-null set3[174].

This convergence of time-averages (i.e. over states at di�erent steps of
the Markov chain) to space-averages (i.e. with respect to the stationary
distribution across the state space), is termed ergodicity and is a con-
sequence of the Birkho�–Khinchin ergodic theorem [40].

Although irreducibility and aperiodicity of a Markov chain which leaves
the target distribution invariant are su�cient for convergence of MCMC

estimators, this does not tell us anything about the rate of that con-
vergence and so how to quantify the error introduced by computing
estimates with a Markov chain simulated for only a �nite number of
steps. Stronger notions of ergodicity can be used to help quantify con-
vergence; we will concentrate on geometric ergodicity here. We �rst

3 The ‘except for a ν-null set’ caveat can be removed by requiring the stronger property
of Harris recurrence [122].
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de�ne a notion of distance between two measures µ and ν on a meas-
urable space (X ,F ), the total variation distance, as



µ − ν

tv = sup
A∈F

��µ (A) − ν (A)��. (2.21)

For a ν-irreducible and aperiodic chain with invariant distribution P

our earlier statement that the distribution on the chain state converges
to P can now be restated more precisely as that for ν-almost all initial
states x0 = x , limn→∞

Pxn |x0 (· | x ) − P

tv = 0. Geometric ergodicity
makes a stronger statement that the convergence in total variation dis-
tance is geometric in n, i.e. that



Pxn |x0 (· | x ) − P

tv ≤ m(x )rn (2.22)

for a positive measurable functionm which depends on the initial chain
state x and rate constant r ∈ [0, 1). For chains which are geometrically
ergodic, we can derive an expression for the asymptotic variance of an
MCMC estimator f̂N related to the variance of a simple Monte Carlo
estimator previously considered in Section 2.1.1.

As in Section 2.1.1 we de�ne fn = f (xn ) and f̂N = 1
N

∑N
n=1 fn , with hereA stochastic process is

stationary if the joint

distribution of the

states at any set of

time points does not

change if all those

times are shifted by a

constant.

the {xn}Nn=1 the states of a Markov chain. For a homogeneous Markov
chain with a unique invariant distribution P which is stationary, the
marginal distribution on the states Pxn is equal to P for all n and we
can use the expression for the variance of a general Monte Carlo es-
timator (which did not assume independence of the random variables)
stated earlier in (2.4). Further the stationarity of the chain means that
the covariance C[fn , fm ] depends only on the di�erence n −m, and so
the variance of the estimator simpli�es to

V
[
f̂N

]
=

V [f]
N

*,1 + 2
N−1∑

n=1

(
N −n
N

C[f0, fn ]
V [f]

)+-. (2.23)

If we multiply both sides of (2.23) by N and de�ne ρn = C[f0,fn ]
V [f] (the lag

n autocorrelations of {fn}), under the assumption that ∑∞
n=1 |ρn | < ∞

in the limit of N → ∞ we have that

lim
N→∞

(
N V

[
f̂N

] )
= V [f]*,1 + 2

∞∑

n=1
ρn+-. (2.24)



2.2 markov chain monte carlo 59

Now considering a chain which is geometrically ergodic from its initial
state, if E

[
|f |2+δ

]
is �nite for some δ > 0 then it can be shown [58, 101,

228] that (2.24) is also the asymptotic variance for a MCMC estimator
calculated using the chain states.

This motivates a de�nition of the e�ective sample size (ESS) for an MCMC

estimator f̂N computed using a geometrically ergodic chain as

Ne� =
N

1 + 2∑∞
n=1 ρn

. (2.25)

The ESS quanti�es the number of independent samples that would be
required in a Monte Carlo estimator to give an equivalent variance to
the MCMC estimator f̂N in the asymptotic limit N → ∞. In practice we
cannot evaluate the exact autocorrelations and so we can only compute
an estimated ESS, N̂e�, from one or more simulated chains with the es-
timation method needing to be carefully chosen to ensure reasonable
values [249]. Although the assumption of geometric ergodicity can of-
ten be hard to verify in practice and ESS estimates can give misleading
results in chains far from convergence, when used appropriately estim-
ated ESSs can still be a useful heuristic for evaluating and comparing
the e�ciency of Markov chain estimators and are often available as a
standard diagnostic in MCMC software packages [55, 211, 236].

So far we have not discussed how to construct a transition operator
giving a chain with the required invariant distribution. As a notational
convenience we will consider the transition operator as being speci�ed
by a conditional density we term the transition density

⇀
t : X × X →

[0,∞) which is de�ned with respect to a base measure µ (which we
assume to be the same as that which the target density we wish to
integrate against is de�ned with respect to, hence the reuse of notation).
The transition operator is then

⇀
T (A | x ) =

∫

A

⇀
t (x ′ | x ) µ (dx ′) ∀A ∈ F , x ∈ X . (2.26)

In practice the probability measure de�ned by a transition operator
will often have a singular component, for example corresponding to a
non-zero probability of the chain remaining in the current state. In this
case ⇀

T is not absolutely continuous with respect to µ and a transition
density is not strictly well de�ned. As we did in the previous chapter
however we will informally use Dirac deltas to represent a ‘density’ of
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singular measures, and so still consider a transition density as existing.
The requirement that the transition operator leaves the target distribu-
tion invariant, can then be expressed in terms of the target density p

and transition density ⇀
t as

p (x ′) =
∫

X

⇀
t (x ′ | x ) p (x ) µ (dx ) ∀x ′ ∈ X . (2.27)

Finding a transition density which leaves the target density invariant
by satisfying (2.27) seems di�cult in general as it involves evaluating
an integral against the target density - precisely the computational task
which we have been forced to seek approximate solutions to. We can
make progress by considering the joint density of a pair of successive
states for a chain with invariant distribution P that has converged to
stationarity. Then we have that

pxn ,x n−1 (x
′,x ) = pxn |x n−1 (x

′ | x ) pxn−1 (x ) =
⇀
t (x ′ | x ) p (x ). (2.28)

We can also consider factorising this joint density into the product of
the marginal density of the current state pxn and the conditional dens-
ity of the previous state given the current state pxn−1 |x n . Due to station-
arity pxn is also equal to p and so we have that pxn−1 |x n must be the
density of a transition operator which also leaves P invariant, corres-
ponding to a time reversed version of the original (stationary) Markov
chain4. If we therefore denote ↼

t = pxn−1 |x n (and which we will term
the backward transition density in contrast to ⇀

t which in this context
we will qualify as the forward transition density), we have that

⇀
t (x ′ | x ) p (x ) = ↼

t (x | x ′) p (x ′) ∀x ∈ X , x ′ ∈ X . (2.29)

Integrating both sides with respect to x , we have that ∀x ′ ∈ X
∫

X

⇀
t (x ′ | x ) p (x ) µ (dx ) =

∫

X

↼
t (x | x ′) µ (dx ) p (x ′) = p (x ′), (2.30)

and so that (2.27) is satis�ed, with the last inequality arising due to ↼
t

being a normalised density on its �rst argument. Therefore if we can
�nd a pair of transition densities, ⇀

t and ↼
t , satisfying (2.29), then the

transition operator speci�ed by ⇀
t will leave the target distribution P

4 The time reversal of a Markov chain is always itself a Markov chain irrespective of
stationarity (as the de�ning conditional independence structure is symmetric with
respect to the direction of time), however the reverse of a homogeneous Markov chain
which is not stationary will not in general itself be homogeneous.
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invariant (and by an equivalent argument so will the transition oper-
ator speci�ed by ↼

t ). We can further simplify (2.29) by requiring that
⇀
t =

↼
t = t, i.e. that both forward and backward transition densities

(and corresponding operators) take the same form and so that the chain
at stationarity is reversible, in which case have that

t(x ′ | x ) p (x ) = t(x | x ′) p (x ′) ∀x ∈ X , x ′ ∈ X . (2.31)

This is often termed the detailed balance condition. Importantly both
the detailed balance (2.31) and generalised balance (2.29) conditions can
also be written in terms of the unnormalised density p̃ by multiplying
both sides byZ , and so can be checked even whenZ is unknown.

The restriction to reversible transition operators in detailed balance,
while su�cient for (2.27) to hold is not necessary. Markov chains which
satisfy the generalised balance condition but not detailed balance are
termed non-reversible, and there are theoretical results suggesting that
non-reversible Markov chains can sometimes achieve signi�cantly im-
proved convergence compared to related reversible chains [74, 132, 191].
While there are several general purpose frameworks for specifying re-
versible transition operators which leave a target distribution invariant,
developing methods for constructing irreversible transition operators
with a desired invariant distribution has proven more challenging. The
approaches proposed to date are generally limited in practice to special
cases such as �nite state spaces [243, 244, 255] or chains with tractable
invariant distributions such as the multivariate normal [38].

Nonetheless non-reversible Markov chains are still commonly used in
MCMC applications. Given a set of transition operators which each in-
dividually leave a target distribution invariant, the sequential composi-
tion of the transition operators will by induction necessarily also leave
the target distribution invariant. Even if the individual transition op-
erators are all reversible, the overall sequential composition will gen-
erally not be (instead having an adjoint ‘backward’ operator corres-
ponding to applying the individual transitions in the reversed order).
Sequentially combining several reversible transition operators is com-
mon in MCMC implementations, though this is more often the result of
each individual operator not meaning the requirements for ergodicity
in isolation and so needing to be combined with other operators, rather
than due to a speci�c aim of introducing irreversibility.
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q (x | xn )
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Figure 2.7.: Visualisation of Metropolis–Hastings algorithm in a univariate
target distribution. The green curves shows the unnormalised target
density. The arrows indicate the current chain state. The orange
curves show the density of proposed moves from this state, with the
left axis using a narrower proposal than the right. The violet curves
show the proposal density scaled by the acceptance probability of
the proposed move, this reducing the probability of transitions to
states with lower density than the current state. The orange region
between the violet and orange curves represents the probability
mass reallocated to rejections by the downscaling by the acceptance
function. The broader proposal in the right axis has an increased
probability of making a move to the other mode in the target density
but at a cost of an increased rejection probability.

Having now introduced the key theory underlying MCMC methods, we
will now discuss practical implementations of the approach. In the fol-
lowing sub-sections we review two of the most popular frameworks for
constructing reversible transition operators which leave a target distri-
bution invariant: theMetropolis–Hastings algorithm andGibbs sampling.

2.2.1 Metropolis–Hastings

The seminal Metropolis–Hastings algorithm provides a general frame-Although the

algorithm has come

to be commonly

known by Edward

Metropolis’ name as

�rst author on the

1953 paper [173], it is

believed that Arianna

and Marshall

Rosenbluth, two of the

other co-authors, were

the main contributors

to the development of

the algorithm [119].

work for constructing Markov chains with a desired invariant distribu-
tion and is ubiquitous in MCMC methodology. The original Rosenbluth–
Teller–Metropolis variant of the algorithm [173] dates to the very begin-
nings of the Monte Carlo method, having being �rst implemented on
Los Alamos’ MANIAC5 one of the earliest programmable computers.
The method was generalised in a key paper by Hastings [127], and
the optimality among several competing alternatives of the form now
used demonstrated by Peskun [207]. An extension to Markov chains
on trans-dimensional spaces was proposed by Green [117].

An outline of the method is given in Algorithm 2 and a visualisation of
its application to a univariate target distribution shown in Figure 2.7.
The key idea is to propose updates to the state using an arbitrary trans-

5 Mathematical Analyzer, Numerical Integrator and Computer.



2.2 markov chain monte carlo 63

Algorithm 2 Metropolis–Hastings.
Input: xn : current chain state, p̃ : unnormalised target density,

q : normalised proposal density which we can sample according to.
Output: xn+1 : next chain state with xn ∼ p (·) =⇒ xn+1 ∼ p (·).

1: x∗ ∼ q(· | xn ) . Generate proposed new state
2: u ∼ U (· | 0, 1)
3: if u < p̃ (x ∗ ) q (x n | x ∗ )

p̃ (x ) q (x ∗ | x n ) then
4: xn+1 ← x∗ . Proposed move accepted
5: else
6: xn+1 ← xn . Proposed move rejected

ition operator and then correct for this transition operator not necessar-
ily leaving the target distribution invariant by stochastically accepting
or rejecting the proposal. If a proposal is rejected the chain remains at
the current state, otherwise the chain state takes on the proposed value.
The transition density corresponding to Algorithm 2 is

t(x ′ | x ) = α (x ′ | x ) q(x ′ | x )+
(
1 −

∫

X

α (x∗ | x ) q(x∗ | x ) µ (dx∗)
)
δ (x ′ − x ),

(2.32)

with the acceptance probability α : X × X → [0, 1] de�ned as

α (x ′ | x ) = min
{
1, q(x | x

′) p (x ′)
q(x ′ | x ) p (x )

}
= min

{
1, q(x | x

′) p̃ (x ′)
q(x ′ | x ) p̃ (x )

}
, (2.33)

and q : X × X → [0,∞) the proposal density.

The original Rosenbluth–Teller–Metropolis algorithm used a symmet-
ric proposal density q(x ′ | x ) = q(x | x ′) ∀x ∈ X , x ′ ∈ X (with the
extension to the non-symmetric case being due to Hastings [127]), in
which case the acceptance probability de�nition simpli�es to

α (x ′ | x ) = min
{
1, p (x

′)
p (x )

}
= min

{
1, p̃ (x

′)
p̃ (x )

}
. (2.34)

Note that in both (2.33) and (2.34) the target density only appears as a
ratio and so only need be known up to a constant.

For the purposes of verifying the detailed balance condition (2.31), the
density of self-transitions, i.e. a transition to the same state, can be ig-
nored as (2.31) is trivially satis�ed for x ′ = x . Considering therefore
the cases x , x ′ where the Dirac delta term representing the singular
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component corresponding to rejected proposals can be neglected, we
have ∀x ∈ X , x ′ ∈ X : x , x

t(x ′ | x ) p (x ) = min
{
1, q(x | x

′) p (x ′)
q(x ′ | x ) p (x )

}
q(x ′ | x ) p (x ) (2.35)

= min{q(x ′ | x ) p (x ), q(x | x ′) p (x ′)} (2.36)

= min
{
q(x ′ | x ) p (x )
q(x | x ′) p (x ′) , 1

}
q(x | x ′) p (x ′) (2.37)

= t(x | x ′) p (x ′). (2.38)

Therefore the detailed balance condition is satis�ed, and the Metropolis–
Hastings transition operator leaves the target distribution P invariant.

A special case for chains on a Euclidean state space X = RD , is when
the proposal transition operator is deterministic and corresponds to a
di�erentiable involution of the current state. Let ϕ : X → X be an
involution, i.e. ϕ ◦ ϕ (x ) = x ∀X with Jacobian determinant Dϕ (x ) =��� ∂ϕ (x )∂x

��� which is de�ned and non-zero P-almost everywhere. Then if we
de�ne a transition operator via the transition density

t(x ′ | x ) = δ (x ′ −ϕ (x ))α (x ) + δ (x ′ − x ) (1 − α (x )),

α (x ) = min
{
1, p ◦ϕ (x )

p (x )
Dϕ (x )

}
,

(2.39)

then this transition operator will leave the target distribution P invari-
ant. This deterministic transition operator variant is as a special case
of the trans-dimensional Metropolis–Hastings extension introduced by
Green [102, 117]. To generate from this transition operator from a cur-
rent state x we compute the proposed move ϕ (x ) and accept the move
with probability α (x ). We can demonstrate that this transition operator
leaves P invariant by directly verifying (2.27)
∫

X

t(x ′ | x ) p (x ) dx (2.40)

=

∫

X

δ (x ′ −ϕ (x )) α (x ) p (x ) + δ (x ′ − x ) (1 − α (x )) p (x ) dx (2.41)

=

∫

X

δ (x ′ −y) α ◦ϕ (y) p ◦ϕ (y) Dϕ (y) dy + (1 − α (x ′)) p (x ′) (2.42)

= p (x ′) + α ◦ϕ (x ′) p ◦ϕ (x ′) Dϕ (x ′) − α (x ′) p (x ′). (2.43)



2.2 markov chain monte carlo 65

In going from (2.42) to (2.43) we use a change of variables y = ϕ (x )
in the integral. As ϕ is an involution we have that ϕ ◦ϕ (x ′) = x ′ and
Dϕ ◦ϕ (x ′) = Dϕ (x

′)−1 and so

α ◦ϕ (x ′)p ◦ϕ (x ′)Dϕ (x ′) = min
{
p ◦ϕ (x ′)Dϕ (x ′),p (x ′)

}
= α (x ′)p (x ′).

The last two terms in (2.43) therefore cancel and so (2.27) is satis�ed by
the transition operator de�ned by (2.39).

Although this transition operator leaves the target distribution P invari-
ant, it is clear that it will not generate an ergodic Markov chain. Starting
from a point x the next chain state will be either ϕ (x ) if the proposed
move is accepted or x if rejected. In the former case the next proposed
move will be toϕ ◦ϕ (x ) = x i.e. back to the original state. Therefore the
chain will visit a maximum of two states. However as noted previously
we can sequentially compose individual transition operators which all
leave a target distribution invariant. Therefore a deterministic proposal
Metropolis–Hastings transition can be combined with other transition
operators to ensure the chain is irreducible and aperiodic.

In general for a Metropolis–Hastings transition operator to be irredu-
cible, it is necessary that the proposal operator is irreducible [250], how-
ever this is not su�cient. For a target density which is positive every-
where on X = RD , then a su�cient but not necessary condition for
irreducibility is that the proposal density is positive everywhere [228].
If the set of points with a non-zero probability of rejection has non-zero
P-measure, then the transition operator is aperiodic [250].

A common choice of proposal density when the target distribution is
de�ned on RD is a multivariate normal density centred at the current
state i.e. q(x ′ | x ) = N (x ′ | x ,Σ ) which satis�es the positivity condi-
tion for irreducibility. In general we would achieve optimal perform-
ance with a proposal density covariance Σ which is proportional to
the covariance of the target distribution [231]. In practice we do not
have access to the true covariance and so typically an isotropic pro-
posal density is used with covariance Σ = σ 2I controlled by a single
scale parameter σ , often termed the step size or proposal width. This pro-
posal density is symmetric so the simpli�ed acceptance rule (2.34) can
be used, further the proposal density depends only on the di�erence
x ′ − x with Metropolis–Hastings methods having these properties of-
ten termed random-walk Metropolis.
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Figure 2.8.: Illustration of concentration of measure in a multivariate normal
distribution. The plots shows the probability density of the distance
from the origin r = ‖x‖2 of a D-dimensional multivariate normal
random vector x ∼ N (0, I) for di�erent dimensionalities D. As the
dimension increases most of the mass concentrates away from the
origin around a spherical shell of radius

√
D. For a multivariate

normal random vector with mean µ and covariance Σ this general-
ises to the mass being mainly in an ellipsoidal shell aligned with
the eigenvectors of Σ and centred at µ.

Random walk Metropolis methods have been extensively theoretically
studied, with su�cient conditions known in some cases to ensure geo-
metric ergodicity of a chain [172, 230] though these can be hard to
verify in practical problems. There has also been much work on prac-
tical guidelines and methods for tuning the free parameters in the al-
gorithm, including approaches for tuning the step-size using accept-
ance rates [94, 227] and adaptive variants which automatically estimate
a non-isotropic proposal covariance [121, 231].

In general the choice of proposal density will be key in determining the
e�ciency of Metropolis–Hastings MCMC methods. Ideally we want to
be able to propose large moves in the state space to reduce the depend-
encies between successive chain states and so increase the number of
e�ective samples, however this needs to be balanced with maintaining
a reasonable acceptance probability with large proposed moves often
having a low acceptance probability. Figure 2.7 gives an illustration of
this trade-o� in a one-dimensional example.

In high-dimensional spaces this issue is much more severe due to the
phenomenon of concentration of measure: in probability distributions
de�ned on high-dimensional spaces most of the probability mass will
tend to be concentrated into a ‘small’ subset of the space [13, 161]. An il-
lustration of this phenomenon for the multivariate normal distribution
is shown in Figure 2.8, where the mass in high dimensions is mostly
located in a thin ellipsoidal shell. The region where most of the mass
concentrates, termed the typical set of the distribution, will for the tar-
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(x1,x2) (x∗1 ,x2)

(x∗1 ,x∗2 )

Figure 2.9.: Schematic of Gibbs sampling transition in a bivariate normal target
distribution (ellipses indicate constant density contours). Given
an initial state x = (x1,x2), the x1 (horizontal) co-ordinate is �rst
updated by independently sampling from the normal conditional
px1 |x2 (· | x2), represented by the orange curve. The new partially
updated state is then x = (x∗1 ,x2). The second x2 (vertical) co-
ordinate is then independently resampled from the normal condi-
tional px2 |x1 (· | x∗1 ), shown by the green curve. The �nal updated
state is then x = (x∗1 ,x∗2 ).

Algorithm 3 Sequential-scan Gibbs.
Input: xn : current chain state, I : ordered set of indices of all individual

variables in chain state, {pi}i ∈I : set of complete conditionals of target
density p which can all be sampled from.

Output: xn+1 : next chain state with xn ∼ p (·) =⇒ xn+1 ∼ p (·).
1: x ← xn
2: for i ∈ I do
3: xi ∼ pi (· | x\i ) . Resample xi from pi given current x\i .
4: xn+1 ← x

get distributions of interest generally have a signi�cantly more com-
plex geometry. Finding proposals which can make large moves in such
settings is challenging: moves in most directions will have a probab-
ility of acceptance which exponentially drops to zero as the distance
away from the current state is increased and so simple proposal dens-
ities which ignore the geometry the typical set such as those used in
random-walk Metropolis will need to make very small moves to have
a reasonable probability of acceptance [33].

2.2.2 Gibbs sampling

Gibbs sampling [93, 100], originally proposed by Geman and Geman for
image restoration using a Markov random �eld image model, is based
on the observation that a valid transition operator for a joint target
distribution across many variables, is one which updates only a subset
of the variables and leaves the conditional distribution on that subset
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given the rest invariant. Although if used in isolation a transition op-
erator which only updates some components of the state will not give
an ergodic chain, as discussed previously multiple transition operators
can be combined together to achieve ergodicity.

More speci�cally the original formulation of Gibbs sampling de�nes
a Markov chain by sequentially independently resampling each indi-
vidual variable in the model from its conditional distribution given the
current values of the remaining variables. If I is an index set over the
individual variables in the vector target state x, then for each i ∈ I we
partition the state x into the ith variable xi and a vector containing all
the remaining variables x\i . For each i ∈ I the target density can be
factorised in to the marginal density p\i on x\i and conditional density
pi on xi given x\i , i.e.

p (x ) = pi (xi | x\i ) p\i (x\i ), (2.44)

with the conditional densities {pi}i ∈I termed the complete condition-

als of the target density. If each of these complete conditionals corres-
ponds to a distribution we can generate samples from (for example us-
ing a transform method or rejection sampling) then we can apply the
sequential Gibbs sampling transition operator de�ned in Algorithm 3
and visualised for a bivariate example in Figure 2.9.

The sequential Gibbs transition is irreducible and aperiodic under mild
conditions [57, 229]. Rather than using a deterministic sequential scan
through the variables, an alternative is to randomly sample without re-
placement the variable to update on each iteration; unlike the sequen-
tial scan version this de�nes a reversible transition operator. The ran-
dom update variant is more amenable to theoretical analysis, however
in practice the ease of implementation of the sequential scan variant
and computational bene�ts in terms of memory access locality mean it
seems to be more often used in practice [128]. A compromise between
the completely random updates and a sequential scan is to randomly
permute the update order after each complete scan.

A apparent advantage of Gibbs sampling over Metropolis–Hastings is
the lack of a proposal density which needs to be tuned. This has helped
popularise ‘black-box’ implementations of Gibbs sampling such as the
probabilistic modelling packages BUGS [105] and JAGS [210]. A well-
known issue with Gibbs sampling however is that its performance is
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highly dependent on the parameterisation used for the target density
[217], with strong correlations between variables leading to large de-
pendencies between successive states and slow convergence to station-
arity. This can be alleviated in some cases by using a suitable repara-
meterisation to reduce dependencies between variables, however this
restores the di�culty of tuning free parameters.

Gibbs sampling updates do not necessarily need to be performed by
sampling from complete conditionals of single variables - in some cases
the complete conditional of a vector of variables has a tractable form
which can be sampled from as a ‘block’; this motivates the name block

Gibbs sampling for such variants. By accounting for the dependencies
between the variables in a block this can help alleviate some of the
issues with highly correlated targets where applicable.

Compound terms such as Metropolis-within-Gibbs are sometimes used
to refer to methods which sequentially apply Metropolis transition op-
erators which each update only a subset of variables in the target distri-
bution. We will however consider the de�ning feature of Gibbs sampling
as being exact sampling from one or more conditionals rather than se-
quentially applying transition operators which update only subsets of
variables and so will only refer to ‘Gibbs sampling’ in that context.

2.3 auxiliary variable methods

Although Gibbs sampling and random-walk Metropolis are commonly
used in practice, as discussed above both have drawbacks when applied
to complex high-dimensional target distributions. One approach which
has proven particularly successful for constructing alternative Markov
transition operators which can overcome some of these shortcomings
is the introduction of auxiliary variables in to the chain state. For con-
creteness of notation in the following discussion we let the variables
of interest, which we term the target variables, be represented by the
random vector x ∈ X and the introduced auxiliary variables by the
random vector a ∈ A. We assume for generality here multiple auxil-
iary variables are introduced, however methods using a single scalar
auxiliary variable are a common special case.

One way of de�ning a joint distribution across the target and auxil-
iary variables is to specify an arbitrary conditional distribution Pa |x
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and choose the marginal distribution Px to be equal to the target distri-
bution P . Given samples from a joint distribution we can estimate ex-
pectations with respect to the marginal distribution on a subset of the
variables by simply ignoring the dimensions of the sampled state we
wish to marginalise over. Therefore if we can construct a Markov chain
with the resulting joint distribution Px,a as its unique invariant distri-
bution, then we can use the target variable components of the sampled
states to estimate expectations with respect to the target distribution.
We will consider two MCMC methods using this approach, slice sampling

and Hamiltonian Monte Carlo in Sections 2.3.1 and 2.3.2.

An alternative approach is to instead construct a joint distribution on
the target and auxiliary variables such that the regular conditional dis-
tribution Px |a is equal to the target distribution P across some set of
values A∗ ⊂ A of the auxiliary variables. In terms of the density px |a
this requires that

px |a (x | a) = p (x ) ∀x ∈ X ,a ∈ A∗. (2.45)

If the marginal probability Pa (A
∗) is non-zero, then the sampled states

{x (n) ,a (n)}Nn=1 of a Markov chain which has Px,a as its unique invari-
ant distribution can be used to estimate expectations with respect to
the target distribution by computing averages over only the sampled
target variable values x (n) for which the corresponding auxiliary vari-
ables a (n) take values in A

∗ (these being at convergence samples from
Px |a (· | a) and so the target distribution), i.e.

∫

X

f (x ) P (dx ) = lim
N→∞

∑N
n=1 1A∗ (a

(n) ) f (x (n) )
∑N

n=1 1A∗ (a
(n) )

. (2.46)

We will discuss simulated tempering, an MCMC method which intro-
duces an auxiliary variable in this manner in Section 2.3.3.

An issue with this approach is that if Pa (A
∗) is small, the number of

sampled states with a ∈ A
∗ may be very small or even zero. This can

require a large number of samples N for the su�cient samples with
auxiliary variables in the required set A∗ to be generated to allow the
MCMC estimates computed using (2.46) to be reliable.

The estimator in (2.46) has a close resemblance to the formulation of
the Monte Carlo estimator corresponding to rejection sampling given
in (2.16), with averages computed over the subset of samples meeting
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Figure 2.10.: Schematic of linear slice sampling, showing ‘plan’ (left) and ‘cross-
sectional’ (right) views of a bivariate target density. Orange curve
(left) and line (right) indicates a constant density slice Sh . The black
square indicates current target state value x and the dashed line
is slice line, the one-dimensional linear sub-space aligned with the
vector v which a new value from the state will be sampled on. The
extents of the dashed line segment represent the initial bracket
new proposed states will be drawn from. Points are proposed
on the slice line by drawing a value uniformly from the current
bracket. The red circle represents an initial proposed point which
is not in the slice and so the right bracket edge is shrunk to this
point. The violet circle shows a second sampled point from the
new reduced bracket, this point within the slice and so returned
as the updated target state.

an ‘acceptance’ criteria. As noted previously rejection sampling can in
fact be considered as an auxiliary variable method, with binary accept
indicator variables a ∈ {0, 1} introduced such that the conditional dens-
ity px |a (x | 1) is equal to the target density p (x ) as shown in (2.12), i.e.
exactly corresponding to the property in (2.45). Rejection sampling can
therefore be seen to be an example of this construct, though in this case
each pair of target – auxiliary variable samples are generated independ-
ently rather than by constructing a Markov chain.

When discussing the rejection sampling estimator (2.16) we saw there
was a close link to importance sampling estimator (2.17), with the im-
portance sampling estimator having the potential advantage however
of using all of the generated samples in computing estimates. In Chapter
5 we will discuss a related alternative approach to constructing estimat-
ors for auxiliary variable methods based on conditioning like simulated
tempering, which unlike the estimator in (2.46) allows using all of the
samples in a Markov chain to compute estimates.

2.3.1 Slice sampling

Slice sampling is a family of auxiliary variable MCMC methods which
exploit the same observation as used to motivate rejection sampling -
to sample from a target distribution it is su�cient to uniformly sample
from the volume beneath a graph of the target density function. Rather
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Algorithm 4 Linear slice sampling.
Input: xn : current chain state, p̃ : unnormalised target density,

q : slice vector density, M : maximum number of step out iterations.
Output: xn+1 : next chain state with xn ∼ p (·) =⇒ xn+1 ∼ p (·).

1: h ∼ U (· | 0, p̃ (xn )) . Sample slice height
2: v ∼ q(·) . Sample vector setting slice line and initial bracket width
3: bu ∼ U (· | 0, 1) . Uniformly sample bracket around current state
4: bl ← bu − 1
5: if M > 0 then (bl , bu ) ← LinearStepOut(xn , bl , bu , M)
6: λ ∼ U (· | bl ,bu )
7: while True do
8: x∗ ← xn + λv . Update proposed state
9: if p̃ (x∗) ≤ h then . Proposed point not on slice

10: if λ < 0 then bl ← λ else bu ← λ . Shrink slice bracket
11: λ ∼ U (· | bl ,bu ) . Sample uniformly from new bracket
12: else . Proposed state on slice
13: return x∗
14: function LinearStepOut(xn , bl , bu , M)
15: L ∼ UniformInt(· | 0,M ) . Sample integer uniformly from [0,M ]
16: U ← M − L
17: while L > 0 and p̃ (xn +bl v) > h do . Step out lower bracket edge
18: bl ← bl − 1
19: L ← L − 1
20: whileU > 0 and p̃ (xn +buv) > h do . Step out upper bracket edge
21: bu ← bu + 1
22: U ← U − 1
23: return bl , bu

than generate independent points from this volume as in rejection samp-
ling, slice sampling instead constructs a transition operator which leaves
the uniform distribution on this volume invariant.

The method we will concentrate on here was proposed by Neal [188,
190]. A related algorithm which uses per data-point auxiliary variables
in Bayesian inference problems was developed by Damien, Wake�eld
and Walker [69]. Murray, Adams and Mackay later proposed ellipt-

ical slice sampling [183], an extension of Neal’s slice sampling method
which is particularly e�ective for target distributions which are well
approximated by a multivariate normal distribution.

Slice sampling de�nes a Markov chain on an augmented state space by
introducing an auxiliary height variable h ∈ [0,∞) in addition to the
target variables x ∈ X . The conditional density on h is

ph |x (h | x) = U (h | 0, p̃ (x )) = 1
p̃ (x )

1[0,p̃ (x )) (h), (2.47)
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i.e. uniform over the interval between zero and the unnormalised target
density value. The joint density on the augmented space is then

px,h (x ,h) =
1

p̃ (x )
1[0,p̃ (x )) (h)

p̃ (x )

Z
=

1
Z
1[0,p̃ (x )) (h). (2.48)

Marginalising (2.48) over h recovers the target density i.e. px = p.

The overall slice sampling transition is formed of the sequential com-
position of a transition operator which updates h given x and a second
operator which updates x given h, each leaving the distributions cor-
responding to the conditional densities ph |x and px |h respectively in-
variant, and so by the same argument as for Gibbs sampling the over-
all transition leaving the target distribution invariant. By construction
the conditional density ph |x is a simple uniform density and so the �rst
transition operator is a Gibbs sampling update in which the height vari-
able is independently resampled from U (0, p̃ (x )), where x is the cur-
rent value of the target state x.

The conditional density px |h (x | h) is also locally uniform, equal to a
positive constant whenever p̃ (x ) > h and zero elsewhere. However we
can usually only evaluate the density up to an unknown constant as
we cannot compute the measure of the set Sh =

{
x ∈ X : p̃ (x ) > h

}
that the density is non-zero over. In general Sh , which is the eponym-
ous slice of slice sampling (so called as it represents a slice through the
volume under the density curve at a �xed height h), will have a com-
plex geometry including potentially consisting of several disconnected
components in the case of multimodal densities. The complexity of the
slices generally prevents us therefore from being able to independently
sample a new value for x uniformly from Sh and so we cannot use a full
Gibbs sampling scheme corresponding to sequentially independently
sampling from Ph |x and Px |h.

A key contribution of [190] was to introduce an elegant method for con-
structing a transition operator which leaves Px |h invariant. In particular
the algorithm has few free parameters to tune, has an e�ciency which
is relatively robust to the choices of the free choices that are introduced,
and will for smooth target densities always move the target state by
some amount (in contrast to the potential for rejections in Metropolis–
Hastings methods). This method is summarised in Algorithm 4 and a
visualisation of the process shown in Figure 2.10.
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An important �rst step in the algorithm is reducing the problem of gen-
erating a point uniformly on the multidimensional slice Sh to making
a move on a one-dimensional linear subspace of this slice (motivating
our naming of this algorithm linear slice sampling) which includes the
current x state. In the original description of the algorithm in [190] the
one-dimensional subspace is chosen to be axis-aligned, corresponding
to updating a single component of the target state.

In the case of an axis-aligned subspace the restriction of the slice to
the one-dimensional subspace is entirely speci�ed by the conditional
density on the chosen variable component given the current values of
the remaining components in the state. Slice sampling transitions for
each variable in the target state can then be applied sequentially akin to
Gibbs sampling, but with the advantage over Gibbs of not requiring the
complete conditionals to be of a tractable form which we can generate
exact samples from. If conditional independency structure in the target
density means the complete conditionals depend only on local subsets
of variables in the target state using updates of this form has the advant-
age of exploiting this locality. As with Gibbs sampling however apply-
ing slice sampling in this manner makes performance strongly depend-
ent on the parameterisation of the target density, with large magnitude
correlations likely to lead to slow exploration of the space.

In [190] various multivariate extensions of the algorithm are suggested
which could help counter this issue, however they add signi�cant im-
plementation complexity compared to the basic algorithm. A simpler
alternative is to de�ne the one-dimensional subspace as being the line
de�ned by a randomly chosen vector and passing through the current
value of x. If this vector is generated independently of the current state
this is su�cient to ensure the overall transition retains the correct in-
variant distribution.

If little is known about the target distribution a reasonable default is
to sample a unit vector of the required dimensionality by generating
a random zero-mean isotropic covariance multivariate normal vector
and then scaling it to unit norm; if an approximate covariance matrix Σ̂
is known for the target density then instead generating the vector from
N (0,Σ ) prior to normalising might be a better choice (as it favours
moves aligned with the principle eigenvectors of Σ) however in this
case elliptical slice sampling, which we will discuss shortly, will often
be a better choice.
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Figure 2.11.: Samples generated using (a) axis-aligned versus (b) random-
direction linear slice sampling in a correlated bivariate normal
distribution. In both cases 1000 transitions where performed (with
random selection of axis to update on each iteration in (a)) with
every second sampled state shown. the maximum number of step
out iterations is M = 4 and the initial bracket width is �xed at
w = 1. The dotted ellipse shows the contour of the target density
which contains 0.99 of the mass. The random direction chain is
able to explore the typical set of the target distribution more e�ect-
ively in this case with the axis-aligned updates leading to slower
di�usion along the major axis of the elliptical contour.

This random-direction slice sampling variant is discussed in compar-
ison to elliptical slice sampling in [183]. It is also bears resemblance to
the scheme proposed in [59] which uses the same auxiliary variable for-
mulation as slice sampling, but there the random direction is chosen in
X × [0,∞) i.e. to update both x and h and not used with the remainder
of Neal’s slice sampling algorithm. An example comparison of apply-
ing axis-aligned and random-direction linear slice sampling updates to
a strongly positively correlated bivariate normal target distribution is
shown in Figure 2.11. In this toy example the isotropic random-direction
updates are able to more e�ectively explore the target density.

The generation of the vector v determining the one-dimensional sub-
space of the slice the update is performed on is represented in Algorithm
4 by Line 2 by v being generated from a distribution with density q. As
well as specifying the direction of the slice line, the vector v also spe-
ci�es a scale along this line. In Neal’s description of the algorithm this
is represented by the explicit bracket width parameter w. Here instead
we assume this parameter is implicitly de�ned by the Euclidean norm
of the vector v, through suitable choice of q this allowing for direc-
tion dependent scales and also the possibility of randomisation of the
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scale; as we will see shortly however compared to for example random-
walk Metropolis updates with a normal proposal, linear slice sampling
is much less sensitive to the choice of scale parameters, therefore a
single �xed scale will often be su�cient.

Once the slice line direction and scale has been chosen, the remainder
of the algorithm can be split into two stages: selection of an initial
bracket on the slice line and including the point corresponding to the
current state; iteratively uniformly sampling points within the current
bracket, accepting the point if it is within the slice Sh otherwise shrink-
ing the bracket and repeating. The algorithm proposed by Neal ensures
both these stages are performed reversibly such that the detailed bal-
ance condition (2.31) is maintained.

The slice bracket de�nes a contiguous interval λ ∈ [bl ,bu ] on the slice
line x∗ (λ) = xn + λv and always includes the point λ = 0 correspond-
ing to the current state. The initial bracket is chosen by sampling a
upper bound bu uniformly from [0, 1] and then setting bl ← bu − 1; in
the λ slice line coordinate system this corresponds to a bracket width of
one, however in general the slice line vector v can have non-unit length
and so de�nes the initial bracket width in the target variable space. Ran-
domising the positioning of the current state within the bracket ensures
reversibility as the resulting bracket would have an equal probability
(density) of being selected from any other point in the bracket (which
the �nal accepted point will be within).

In general only a subset of the points in the current slice bracket will
be within the slice Sh . As new states are proposed by sampling a point
uniformly from the current bracket, the probability of such a proposal
being in the slice will be equal to the proportion of the bracket that
intersects with the slice Sh . In general therefore it is desirable for the
bracket to include as much of the slice as possible while not making
the proportion of the bracket intersecting with the slice too small such
that many points need to be proposed before a point on the slice is
found. The magnitude of v determines the initial bracket extents and so
should ideally chosen based on any knowledge of the ‘typical scale’ of
the target density. Often we will have little prior knowledge about such
scaling however and the scale will often vary signi�cantly across the
target space, and so we may choose an initial bracket which includes
only a small proportion of the slice.
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The stepping out routine proposed by [190] and detailed in Lines 14
to 23 in Algorithm 4 is designed to counter this issue. The initial slice
bracket [bl ,bu ] is iteratively ‘stepped-out’ by incrementing / decrement-
ing the upper / lower bracket bounds until the corresponding endpoint
of the bracket lies outside the slice or a pre-determined maximum num-
ber of steps out have been performed. Ideally the step out routine will
return a bracket which contains all of the intersection of the slice with
the slice line while not also including too great a proportion of o� slice
points; in general the slice may be non-convex or consist of multiple
disconnected components and so the intersection of the slice line with
the slice may consist of multiple disconnected intervals in which case
the stepping out routine will likely only expand the slice to include a
subset of these intervals. The adaptivity provided by the stepping out
routine will still however generally help to make the performance of
the sampler much less sensitive to the choice of the bracket scale in
contrast to for example random-walk Metropolis algorithms.

Analogously to the randomisation of the initial bracket positioning, in
the stepping out routine if a maximum number of step out iterations
M is set, the resulting step ‘budget’ is randomly allocated between in-
crements of the upper bound bu and decrements of the lower bound
bl such that �nal extended bracket generated by the step out routine
would have an equal probability of being generated from any point
within the generated bracket interval. If M is set to zero this corres-
ponds to not performing any stepping out and simply using the initial
sampled bracket; although reducing the robustness of the algorithm to
the choice of the initial bracket width this option has the advantage
of minimising the number of target density evaluations by not requir-
ing additional density evaluations at the bracket endpoints during the
step-out routine. An alternative ‘doubling’ step-out routine was also
proposed in [190]. This has the advantage of exponentially expanding
the slice bracket compared to the linear growth of the step-out routine
described in Algorithm 4 and so can be more e�cient in target distri-
butions where the typical scales of the density varies across several
orders of magnitude. The doubling procedure requires a more complex
subsequent procedure for sampling points in the resulting bracket how-
ever to ensure reversibility.

Once the initial bracket has been generated and potentially stepped out,
the remainder of the algorithm consists of �nding a point on the slice
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Algorithm 5 Elliptical slice sampling.
Input: xn : current chain state, p̃ : unnormalised target density,
µ,Σ : mean and covariance of normal approximation to target.

Output: xn+1 : next chain state with xn ∼ p =⇒ xn+1 ∼ p.
1: h ∼ U (· | 0, p̃ (xn )/N (xn | µ,Σ )) . Sample slice height
2: v ∼ N (· | µ,Σ ) . Sample vector setting slice ellipse
3: θu ∼ U (· | 0, 2π) . Uniformly sample bracket around current state
4: θl ← θu − 2π
5: θ ← θu
6: while True do
7: x∗ ← (xn − µ) cosθ + (v − µ) sinθ + µ . Update proposed state
8: if p̃ (x∗)/N (x∗ | µ,Σ ) ≤ h then . Proposed point not on slice
9: if θ < 0 then θl ← θ else θu ← θ . Shrink slice bracket

10: θ ∼ U (· | θl ,θu ) . Sample uniformly from new bracket
11: else
12: return x∗

line bracket which is within the slice Sh . This is done in an iterative
manner by �rst sampling a point uniformly from the current bracket
and checking if it is in the slice or not. If the proposed point is in the
slice, the corresponding value for the target variables is returned at
the new state. Otherwise the proposed point is set as the new upper or
lower bound of the bracket such that the point corresponding to the cur-
rent state remains in the bracket. This shrinks the bracket by removing
an interval where it is known at least some points are not in the slice.
A new point is then sampled uniformly from the smaller bracket and
the procedure repeats until a point in the slice is found.

The iterative shrinking of the slice bracket implemented by this pro-
cedure introduces a further level of adaptivity in to the slice sampling
algorithm, meaning that even if only a small proportion of the initial
bracket lies within the slice only relatively few iterations will be needed
still till the bracket is shrunk su�ciently for there to be a high probab-
ility of proposing a point within the bracket. By ensuring the point
corresponding to the current state always remains within the current
bracket, reversibility is maintained.

An alternative to the linear slice sampling procedure just described,
is the elliptical slice sampling method proposed in [183] and described
in Algorithm 5. As suggested by the name, in elliptical slice sampling
rather than proposing points on a line instead an elliptical path in the
target space is de�ned and new points proposed on this ellipse.
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Elliptical slice sampling is intended for use in target distributions which
can be approximated by a known normal distribution N (µ,Σ ). This
distribution might correspond to a normal prior distribution on model
latent variables where the dependence between the latent and observed
variables is only weak and so the posterior remains well approximated
by the prior or a normal approximation �tted directly to the target dis-
tribution using an optimisation based approximate inference scheme
such as those discussed in Appendix C [194].

In each elliptical slice sampling transition an auxiliary vector v is inde-
pendently sampled from the normal distributionN (µ,Σ ). If the target
distribution was exactly described by the normal distribution we could
use this independent draw directly as the new chain state (though ob-
viously in this case there would be no advantage in formulating as an
MCMC method). In reality the target distribution will only approxim-
ately described by N (µ,Σ ) and so we wish to instead use this inde-
pendent draw to de�ne a Markov transition operator that will poten-
tially move the state to a point nearly independent of the current state,
but is also able to back o� to more conservative proposals closer to the
current chain state. This is achieved by de�ning an elliptical path in
target space centred at µ, passing through the current state xn and the
auxiliary vector v and parameterised by an angular variable θ

x∗ (θ ) = (xn − µ) cosθ + (v − µ) sinθ + µ. (2.49)

If we generated θ uniformly fromU (0, 2π ) then the corresponding pro-
posed transition x∗ (θ ) would exactly leave the distribution N (µ,Σ )
invariant. As we instead wish to leave the target distribution invari-
ant, a slice sampling algorithm is used to �nd a θ which accounts for
the di�erence between the target distribution and normal approxim-
ation. An auxiliary slice height variable h is sampled uniformly from
U (0, p̃ (xn )/N (xn | µ,Σ )) and used to de�ne a slice

Sh =

{
x ∈ X :

p̃ (xn )

N (xn | µ,Σ ) < h

}
. (2.50)

Similar to the linear slice sampling algorithm, a bracket [θl ,θu ] on the
elliptical path is randomly placed around θ = 0 corresponding to the
current state xn . Unlike the requirement to choose a suitable initial
bracket width in linear slice sampling however, we can de�ne the ini-
tial bracket in elliptical slice sampling to include the entire elliptical
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path i.e. θl = θu − 2π ; we only need to randomise the ‘cut-point’ de-
�ning the initial end-points of the bracket to ensure reversibility. This
removes the need to choose an initial bracket width (de�ned by |v | in
our description of the linear slice algorithm) and for any step out pro-
cedure, and so beyond choosing the multivariate normal approximation
elliptical slice sampling does not have any free settings which need to
be tuned.

Once the initial bracket is de�ned, a directly analogous iterative pro-
cedure to that used in the linear slice sampling algorithm is used to
�nd a θ value corresponding to a point in the slice while using rejected
proposed points to shrink the bracket. As with linear slice sampling,
providing the target density is a smooth function and so the intersec-
tion of the elliptical path with the slice is a non-zero measure set, then
the state moved to by the elliptical slice sampling transition operator
will never be equal to the previous state.

2.3.2 Hamiltonian Monte Carlo

The MCMC algorithms discussed so far have required only the ability to
evaluate a (unnormalised) density function for the target distribution
of interest. For distributions de�ned on real-valued variables the target
density function p̃ will often be di�erentiable - the gradient ∂p̃

∂x exists
P-almost everywhere. In these cases it is natural to consider using the
gradient to help guide updates to the state. In particular we might hope
to reduce the random-walk behaviour of simpler methods which leads
to a slow di�usive exploration of high-dimensional spaces.

A particularly powerful auxiliary variable MCMC method utilising gradi-What we refer to as

Hamiltonian Monte

Carlo here was

introduced in [81] as

Hybrid Monte Carlo.
The alternative

Hamiltonian Monte
Carlo was suggested

by MacKay [161] to

emphasise the role of

Hamiltonian dynamics

in the method while

maintaining the same

acronym [34].

ent information is Hamiltonian Monte Carlo (HMC) [81, 192]. HMC intro-
duces auxiliary momentum variables in to the chain state and then uses
simulated Hamiltonian dynamics trajectories in the augmented space
to generate proposed updates to the momentum–target variables state
pair. The simulated Hamiltonian dynamics exhibit key geometric prop-
erties that make HMC well suited to performing MCMC in complex target
distributions on high-dimensional spaces [37], with the method able to
propose long-range moves with a high probability of acceptance. The
reduced random-walk behaviour means that HMC often scales better
to high-dimensional target distributions than simpler methods such
as random-walk Metropolis and Gibbs sampling [33]. Under the as-
sumption of a target distribution consisting of a product of independ-
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ent factors on D variables, optimally tuned random-walk Metropolis
transitions will take O (D2) computational e�ort to achieve near inde-
pendence between states of the chain while an optimally tuned HMC

transition can achieve the same with a O (D 5
4 ) cost [192].

Most implementations of HMC require the target density p is de�ned
with respect to the Lebesgue measure on a Euclidean space X = RD .
Target densities with bounded support on RD add complication to the
algorithm by requiring checks that proposed updates to the state re-
main within the support of the target distribution and re�ecting at the
boundaries of the support [192]. Often however a change of variables
can be performed with a bijective transformation (using Equation 1.22)
that maps to a density with unbounded support, for example taking a
log-transform of a positive variable.

Rather than working directly with the unnormalised target density p̃

the HMC algorithm is more naturally described in terms of a potential

energy function ϕ : RD → R which is related to p̃ by

p̃ (x ) = exp(−ϕ (x )) ⇐⇒ ϕ (x ) = − log p̃ (x ). (2.51)

The original target variables x ∈ RD are augmented with a vector of
momentum variables p ∈ RD . The conditional density on the momenta
given the target variables pp |x is de�ned in terms of a kinetic energy

function τ : RD ×RD → R which is even in its �rst argument

pp |x (p |x ) ∝ exp(−τ (p | x )). (2.52)

The joint density on the momentum and target variables is then

px,p (x ,p) ∝ exp(−ϕ (x ) − τ (p | x )) = exp(−h(x ,p)). (2.53)

The functionh(x ,p) = ϕ (x ) +τ (p | x ) is termed theHamiltonian for the
system. A common simpli�cation is for the momenta to be chosen to
be independent of the target variables with a marginal density de�ned
by a kinetic energy τ : RD → R

pp (p) ∝ exp(−τ (p)). (2.54)

In this case the Hamiltonian h(x ,p) = ϕ (x ) + τ (p) is separable - there
are no terms jointly dependent on both x and p.
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Commonly a quadratic form τ (p) = 1
2p

TM−1p is used for the kinetic
energy where M is a positive de�nite matrix typically termed the mass

matrix. A quadratic kinetic energy corresponds to assuming normally
distributed momenta with zero-mean and covariance M .

In classical mechanics, the Hamiltonian describes the total energy of a
mechanical system, and can be used to de�ne a canonical Hamiltonian

dynamic via the set of ordinary di�erential equations (ODEs)

dx
dt =

∂h

∂p

T

, dp
dt = −

∂h

∂x

T

. (2.55)

We de�ne the �ow map corresponding to this dynamic as a family of
mappings ψt : RD ×RD → RD ×RD parameterised by a time t ∈ R

such that if (x (t ),p (t )) is the solution to the set of ODEs (2.55) at a time
t given an initial condition x (0) = x0, p (0) = p0 then

ψt (x0,p0) = (x (t ),p (t )). (2.56)

The Hamiltonian �ow map has several desirable properties as a pro-
posal generating mechanism for a MCMC method. The Hamiltonian is
exactly conserved along the trajectories generated by the �ow map, i.e.
h(x ,p) = h ◦ ψt (x ,p) for all t ∈ R and for any initial x ,p pair. As
px,p (x ,p) ∝ exp(−h(x ,p)) this means Hamiltonian trajectories remain
con�ned to constant density surfaces in the augmented state space.

The Hamiltonian �ow map is also volume preserving - the Jacobian of
the �ow map, Jψt has determinant one for all t and starting from any
initial (x ,p). This volume preservation is a consequence of a stronger
geometric property of the dynamic - that the �ow map is symplectic

[152]. Symplecticity of the �ow map is implied by the condition

JTψt


0 I

−I 0

 Jψt =

0 I

−I 0

 (2.57)

being satis�ed. The symplectic nature of Hamiltonian dynamics is cent-
ral to e�cient scaling of HMC to high-dimensional spaces [37, 192].

A �nal crucial property of the Hamiltonian �ow map is that it exhibits
a time-reversal symmetry under negation of the momenta

(x ′,p ′) = ψt (x ,p) ⇐⇒ (x ,−p) = ψt (x
′,−p ′). (2.58)
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If we de�ne r : RD × RD → RD × RD as a ‘momentum-reversal’
operator such that r (x ,p) = (x ,−p) then this time-reversal symmetry
means that the composition r ◦ ψt is an involution. Further as r also
has Jacobian determinant one, then the composition r ◦ ψt also itself
has a unit Jacobian determinant.

Using the previous result for the Metropolis–Hastings accept ratio for
the special case of a deterministic proposal formed by an involution
(2.39), we have that a proposal generated by applying r ◦ ψt to the
current state pair (x ,p) for any t has an accept probability of one

α (x ,p) = min
{
1,

exp(−h ◦ r ◦ ψt (x ,p)
)

exp(−h(x ,p))
��� Jr ◦ψt (x ,p)���

}
(2.59)

= min{1, exp(h(x ,p) −h ◦ r ◦ ψt (x ,p)
)}
= 1. (2.60)

This is a result of the conservation of the Hamiltonian under the �ow
map (and momentum-reversal operator as τ is even in the momenta)
and the composed map having unit Jacobian determinant. Therefore
proposals formed by integrating the ODEs forward by some length of
time from the current state and then reversing the momentum would
always be accepted.

On its own the momentum reversal operator r is also an involution
with unit Jacobian determinant which exactly conserves the Hamilto-
nian, and so can also be applied as a ‘proposal’ with probability of ac-
ceptance of one. If we sequentially alternate updates using r ◦ψt and r ,
each de�nes a valid Markov transition operator which leaves the (exten-
ded) target invariant, and in sequential composition the momentum re-
versals cancel. We can therefore construct a Markov chain which leaves
the target distribution with density (2.53) invariant by repeatedly gen-
erating new states by integrating the Hamiltonian dynamic forward by
arbitrary lengths of time. Note that though each of r ◦ ψt and r are
individually reversible and so respect detailed balance, the sequential
composition is no longer reversible.

There are two major problems with this scheme. Firstly for most ϕ and
τ it is not possible to integrate the ODEs (2.55) exactly and so we can-
not evaluate the exact �ow map ψt . Secondly the scheme as proposed
would not be ergodic as the Hamiltonian is conserved by each applica-
tion of the �ow map, and so all states generated in this way would be
con�ned to a constant Hamiltonian manifold in the joint space.
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Figure 2.12.: Visualisation of Hamiltonian Monte Carlo applied to a univariate
target density p (x ) = α exp(−αx ) (1 + exp(−x ))−1−α with α = 0.4.
The left axis shows contours (green curves) of the Hamiltonian
function on the augmented (x ,p) state space. The orange mark-
ers shows a Hamiltonian trajectory simulated using the leapfrog
method, starting at the square marker and �nishing at the trian-
gular marker. The trajectory nearly exactly traces a Hamiltonian
contour due to the approximate energy conservation of the simu-
lated dynamic, with the proposed update (from square to triangu-
lar markers) therefore accepted with high probability. At the end
of the orange trajectory the momentum is randomly resampled,
giving a new initial state (purple square marker) for a second
simulated trajectory shown by the purple markers. The right axis
shows the variation in the Hamiltonian h, potential energy ϕ and
kinetic energy τ over the two trajectories. In each trajectory the
Hamiltonian is close to constant, with shifts in the potential en-
ergy matched by opposing shifts in the kinetic energy. There is
a step change in the kinetic energy and Hamiltonian when then
momentum is resampled at the end of �rst trajectory.

The �rst issue can be resolved by approximately integrating the ODEs.
Importantly by using a symplectic integrator we are able to form ap-
proximate Hamiltonian �ow maps which maintain the key volume-
preservation and time-reversibility properties of the exact �ow map
dynamic and de�ne, as the name suggests, symplectic maps. There is a
large class of such symplectic integrators [152] however for separable
Hamiltonians an appealingly simple scheme is the Störmer–Verlet or
leapfrog integrator. If we �rst de�ne the following component maps

ψ̂a
δt (x ,p) =

(
x + δt∇τ (p)T,p

)
, ψ̂b

δt (x ,p) =
(
x ,p − δt∇ϕ (x )T

)
, (2.61)

then a leapfrog step is de�ned by the symmetric composition

ψ̂lf
δt = ψ̂

b
δ t
2
◦ ψ̂a

δt ◦ ψ̂b
δ t
2
. (2.62)
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Each leapfrog step is time-reversible and volume conserving. The com-
position of L leapfrog steps

(
ψ̂lf
δt

)L
maintains these properties. The al-

ternative symmetric composition ψ̂a
δ t
2
◦ ψ̂b

δt ◦ ψ̂a
δ t
2

also de�nes a sym-
plectic integrator and is also sometimes termed the leapfrog method. In
practice when multiple leapfrog steps are composed together the inter-
mediate half time-steps can be combined, for example using (2.62)
(
ψ̂b

δ t
2
◦ ψ̂a

δt ◦ ψ̂b
δ t
2

)
◦
(
ψ̂b

δ t
2
◦ ψ̂a

δt ◦ ψ̂b
δ t
2

)
= ψ̂b

δ t
2
◦ ψ̂a

δt ◦ ψ̂b
δt ◦ ψ̂a

δt ◦ ψ̂b
δ t
2

and so the two di�erent symmetric compositions only di�er by whether
initial and �nal half momentum or position time steps are taken.

Although an approximate �ow map will no longer exactly conserve
the Hamiltonian, a key property of symplectic integrators, including
the leapfrog method, is that they correspond to the exact �ow map
of a modi�ed Hamiltonian system. Providing the integrator step-size
δt is below a stability threshold this modi�ed Hamiltonian h̃δt will be
close to the original target Hamiltonian: ���h(x ,p) − h̃δt (x ,p)��� ≤ O (δtk )
where k is the order of the integrator (k = 2 for the leapfrog method)
[152]. As the approximate �ow map exactly conserves this modi�ed
Hamiltonian, this means that the change in the Hamiltonian over long
simulated trajectories will remain bounded. If we replace the exact �ow
map for the approximate �ow map corresponding to L steps of the
leapfrog integrator with step size δt in (2.59) then we have that the
probability of accepting a proposal generated by approximately integ-
rating the ODEs and then negating the momentum is

α (x ,p) = min
{
1, exp

(
h(x ,p) −h ◦ r ◦

(
ψ̂lf
δt

)L
(x ,p)

)}
. (2.63)

As the change in Hamiltonian over the trajectory remains bounded, if
the step-size is small enough the probability of acceptance will remain
close to one even for a large number of integrator steps L. This means
simulated Hamiltonian dynamics can be used to form long-range pro-
posed moves which maintain a high probability of acceptance. An ex-
ample of this approximate conservation of the Hamiltonian is shown in
Figure 2.12 which shows a visualisation of trajectories simulated using
the leapfrog method in a system with a one-dimensional target variable
x and the variation in the Hamiltonian, potential and kinetic energies
along these trajectories.
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Algorithm 6 Hamiltonian Monte Carlo.
Input: xn : current target variables state, ϕ : di�erentiable potential energy

function = − log p̃, δt : leapfrog integrator step size, L : number of leapfrog
integration steps, M : mass matrix.

Output: xn+1 : next chain state with xn ∼ p =⇒ xn+1 ∼ p.
1: p ∼ N (0,M ) . Independently sample new momentum vector.
2: p∗ ← p − δt

2 ∇ϕ (xn )T . Initial half momentum step ψ̂b
δ t
2

.
3: x∗ ← xn + δtM

−1p∗ . ψ̂a
δt .

4: for s ∈ {1 . . . L − 1} do
5: p∗ ← p∗ − δt∇ϕ (x∗)T . ψ̂b

δ t
2
◦ ψ̂b

δ t
2

.
6: x∗ ← x∗ + δtM−1p∗ . ψ̂a

δt .
7: p∗ ← p∗ − δt

2 ∇ϕ (x∗)T . Final half momentum step ψ̂b
δ t
2

.
8: u ∼ U (0, 1)
9: α ← exp

(
ϕ (xn ) +

1
2pM

−1p −ϕ (x∗) − 1
2p
∗M−1p∗

)
. Accept probability.

10: if u < α then
11: xn+1 ← x∗ . Proposed move accepted.
12: else
13: xn+1 ← xn . Proposed move rejected.
14: return xn+1

When using an approximate �ow map as there is now a non-zero prob-
ability of rejection, upon rejecting the momentum will remain at its
current state, before then being negated. The next simulated traject-
ory will therefore backtrack along a previous trajectory after a rejec-
tion. To prevent this backtracking behaviour and resolve the issue that
Markov transitions consisting solely of simulated dynamics proposals
and momentum-reversals would remain con�ned to a constant mod-
i�ed Hamiltonian manifold, a further update is introduced in to the
overall HMC transition which changes the momenta while leaving the
target variables �xed.

For the common case of a quadratic kinetic energy τ (p) = 1
2p

TM−1p
and so normal marginal distribution on the momenta, the simplest way
to update the momenta is to independently sample a new vector from
N (0,M ) at the beginning of each HMC transition. This will both perturb
the initial Hamiltonian of the system and also mean the initial direction
of any simulated trajectory is randomised so that the negation of the
previous momentum upon a rejection does not lead to backtracking. In
this case as the momentum is independently resampled in each trans-
ition there is no need to store the momentum state between successive
transitions and the overall HMC transition will be reversible.
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Algorithm 6 describes the overall HMC transition corresponding to us-
ing a quadratic kinetic energy τ (p) = 1

2p
TM−1p, independent moment-

um resampling and a leapfrog integrator. The integrator step size δt
and number of steps L together determine the total approximate integ-
ration time T = Lδt . Intuitively we want to choose T to minimise the
dependence of the generated proposals on the current point. In gen-
eral however we will not know what this optimal integration time is
and in most problems it will depend on the starting state. Choosing
an appropriate integration time can therefore be challenging, and will
often involve some level of trial and error with pilot runs [192]. Too
small values lead to dynamics proposals which remain close to the cur-
rent state which combined with the independent resampling of the mo-
menta on each transition lead to random-walk like behaviour for the
overall transition, with limited gain from using the HMC transition over
simpler methods such as random-walk Metropolis.

The computational cost of each HMC transition will however scale lin-
early with L and so the integration time, therefore it is desirable to not
increase the integration time beyond the point where there is any gain
in decreased dependence between successive points; further as typic-
ally the simulated trajectories will be quasi-periodic increasing the in-
tegration time can in some cases lead to proposals moving closer to the
original state. The integration time does not need to be the same for
each transition and randomising it by for example uniformly sampling
from an interval can be helpful in some problems to reduce pathological
behaviour due to near periodicity of trajectories [192].

In combination with the integration time an appropriate value must
also be chosen for the integrator step size δt . As for a �xed integration
timeT the step size determines the number integrator steps needed and
so computational cost per transition, we ideally want to use as large a
step size as possible. The step size however also controls how large the
typical change in the Hamiltonian is across a simulated trajectory and
so the accept rate for the proposed updates. As the step size increases
the average accept rate will decrease and beyond some limit typically
the dynamic will become unstable and the Hamiltonian error no longer
remain bounded, leading to very low accept rates for large L. Typically
this stability limit will vary depending on the starting state, so we may
occasionally encounter unstable diverging trajectories even when the
step size is small enough for most trajectories to remain stable.
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Analogously to results for tuning the proposal width for random-walk
Metropolis methods, guidelines have been derived for choosing the in-
tegrator step-size in HMC based on an optimal (in the sense of maxim-
ising some measure of computational e�ciency) average accept prob-
ability for the Metropolis step. A target accept rate of 0.65 has been
suggested [26, 192] under idealised assumptions of a high-dimensional
target distribution in which the individual dimensions are independent
and when using the leapfrog integrator. Under more general assump-
tions in [35] an accept rate range of 0.6 to 0.9 was instead recommen-
ded as giving close to optimal performance for symplectic integrators
of order 2 including the leapfrog method.

To help address the challenges of tuning the free integrator step-size
and integration time parameters of the standard HMC algorithm, ad-
aptive variants which automatically tune these parameters have been
proposed. Of particular note is the no U-turn sampler (NUTS) algorithm
[130]. Rather than using a single �xed integration time, NUTS dynamic-
ally varies the length of the simulated trajectories, expanding the tra-
jectories until a termination criterion corresponding intuitively to the
trajectory ‘turning back on itself’ (hence the name) is met and then
using a slice sampling scheme to select a new state from this dynam-
ically generated trajectory. Maintaining reversibility in such a scheme
is non-trivial and NUTS uses an elegant recursive method to do so: full
details are beyond the scope of this review but both [130] and a sub-
sequent review article [33] provide excellent visual explanations of the
algorithm. The dynamic integration time scheme is combined in NUTS

with a stochastic optimisation method for tuning the integrator step-
size to achieve a target acceptance rate, with a vanishing adaptation
rate ensuring convergence of the chains to stationarity [9].

Re�nements to NUTS have been suggested including generalised ter-
mination criteria [29, 32] and an extension to use multinomial sampling
of the �nal state from the generated trajectory instead of slice sampling
[32, 33]. The original NUTS algorithm and these re�nements have seen
widespread empirical success through their implementation in the prob-
abilistic programming framework Stan [55] which combines a general
purpose probabilistic model speci�cation language [247] and automatic
di�erentiation library [54] with e�cient implementations of approxim-
ate inference methods including NUTS.
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We have so far neglected to mention how the mass matrix M is chosen.
The simplest choice is to use M = I; this is a reasonable choice when
the target density has a close to isotropic geometry with approximately
equal scaling of each dimension and no strong correlations between
variables. Using a non-identity mass matrix is equivalent to running
HMC with a identity mass matrix in a linearly transformed reparamet-
erisation of the target density [192] and so can be used to account for
non-isotropic target densities by rescaling and decorrelating the vari-
ables of the target distribution. Ideally the mass matrix would be chosen
based on the covariance of the target distribution [33, 192] however in
practice this will typically not be available. One option is to estimate the
target covariance during an initial adaptive phase in the chain which
is used within the NUTS implementation in Stan [55].

In reality for complex target distributions the geometry of the density
will vary across the state space with position-dependent curvature. In
these cases a single constant mass matrix will be ine�ective at locally
decorrelating and normalising the scale of the variables corresponding
to the di�erent dimensions of the target distribution. This can degrade
the performance of HMC methods, with no single step size appropriate
in all regions of the state space and typically a trade-o� needing to be
made between choosing a small step size based on the scale of the most
constrained directions and choosing a larger step size for e�ciency
with the possible result of the simulated dynamic being unable to enter
tightly constrained regions of the target distribution [28].

For a quadratic kinetic energy function τ (p) = 1
2p

TM−1p, considering
the kinetic energy as a random variable τ = τ (p), as p has a multivari-
ate normal marginal distribution, τ will have mean D/2 and standard
deviation

√
D [192]. As the kinetic energy is bounded below by zero and

the Hamiltonian and so sum of kinetic and potential energies approxim-
ately conserved along simulated trajectories, the maximal increase in
the potential energy along a trajectory is approximately upper bounded
by the initial kinetic energy. The potential energy will therefore typ-
ically vary by an amount of order D over simulated trajectories. For
complex target distributions with varying curvature and scales, the po-
tential energy will often vary by much more than D across the typical
set of the distribution and so any single trajectory will typically be only
able to cover a small region in the typical set, with exploration of the
full typical set of the distribution then degrading to a random-walk like
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behaviour as only the momentum resampling steps allows movement
up and down the full potential energy range [28, 33].

A suggested resolution to the issue of varying curvature across the tar-The naming of

RMHMC arises from a

connection to

Riemannian

geometry, with the

metric de�ning a

Riemannian

manifold, with the

length of shortest

path between two

points on the

manifold, i.e. a

geodesic, locally
de�ned by the metric.

get density is to use a mass matrix which depends on the target state x.
Riemannian-manifold Hamiltonian Monte Carlo (RMHMC) [107] de�nes
a non-separable Hamiltonian using a kinetic energy function

τ (p | x ) = 1
2p

T (G (x ))−1p +
1
2 log|G (x ) | (2.64)

corresponding to pp |x (p | x ) = N (p | 0,G (x )) where G : RD → RD×D

is a positive-de�nite matrix function termed the metric. In analogy to
the earlier mentioned equivalence between using a non-identity con-
stant mass matrix and running HMC with an identity mass matrix in a
reparameterised target distribution in terms of a linear transformation
of the original target variables [192], RMHMC can be shown to be equival-
ent to running HMC with an identity mass matrix in a reparameterisa-
tion of the target distribution in terms of a non-linear transformation of
the target variables [195]. This non-linear reparameterisation can loc-
ally transform the target distribution so that the resulting density has
a geometry more amenable to exploration by the HMC dynamic.

Various schemes have been proposed for choosing a metric for a partic-
ular target distribution. In [107] the Fisher–Rao metric [5] is suggested
as it provides a natural description of the Riemannian geometry of para-
metric probability distributions and so is particularly relevant for tar-
get distributions corresponding to the posterior of Bayesian inference
problems for models of IID datasets. The Fisher–Rao metric only has a
closed form solution however for a limited set of distributions. An al-
ternative more generally applicable metric based on a regularisation of
the Hessian of the log target density to ensure positive-de�niteness was
suggested in [28]. A ‘geometrically tempered’ metric designed to help
exploration of multimodal distributions was suggested in [195].

The non-separable nature of the Hamiltonian in RMHMC means that the
standard leapfrog method cannot be employed to simulate the result-
ing dynamic, with alternative symplectic integrators such as the gener-
alised leapfrog method [152] required. These integrators involve impli-
cit steps which requires solving a set of non-linear equations on each
iteration. Further evaluation of the inverse of the metric and its log de-
terminant in general have a cost which scales cubically with D, there-
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fore the overall computational cost of simulating the RMHMC dynamic
is much higher per transition than for standard HMC. In some target
distributions the gain in sampling e�ciency over standard HMC from
using RMHMC updates can signi�cantly outweigh the increased compu-
tational cost per sample however [28, 107].

2.3.3 Simulated tempering

The �nal auxiliary variable method we consider, simulated tempering

[164], simulates the dynamics of a thermodynamic system subject to a
varying temperature. Simulated tempering was originally proposed to
improve the exploration of highly-multimodal distributions de�ned by
undirected models such as the Ising spin model.

A particle of systems with a state described by a vector x ∈ X and a
total energy determined by a function ϕ : X → R will have an equilib-
rium distribution on the state at a temperature T which has a density
proportional to exp(−βϕ (x )) where β = (kT )−1 is the inverse temperat-

ure and k is Boltzmann’s constant. If the energy function ϕ is ‘rough’
with multiple local minima, then as the temperature T tends to zero
and β → ∞ the corresponding peaks in the density function become
increasingly sharp and the mass of the distribution more tightly concen-
trated around these peaks. Conversely as the temperature T increases
and β → 0, the density becomes increasingly �at across X .

Simulated annealing [1, 140], is a stochastic optimisation method which
uses this intuition about the properties of thermodynamical systems
to improve the probability of an optimisation routine converging to
a global optima in highly multimodal objectives. The objective func-
tion to be minimised is identi�ed with the energy function ϕ of the
system and the variables being optimised with the state x ∈ X . An
increasing schedule of K inverse temperatures {βk}Kk=1 is chosen with
0 ≤ β1 ≤ β2 ≤ · · · ≤ βK ≤ ∞. An initial value for the target variablesx0

is (randomly) chosen and new values for the target variables are then
computed iteratively for each k ∈ {1 . . .K} by applying a Metropolis–
Hastings transition operator xk ∼ Tk (· | xk−1) which leaves the distri-
bution with density proportional to exp(−βkϕ (x )) invariant.

The hope is that the transitions at low inverse temperatures will be able
to move freely around the target space due to the relatively �at form
of the density function with lowered barriers between modes. Ideally
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Figure 2.13.: Example of using an inverse temperature to geometrically bridge
between unimodal base and bimodal target densities. Each curve
shows the conditional density px |k corresponding to the joint
target density (2.66) for k = 0 to k = 5 with βk = k/5 in this case.

the state will therefore tend to converge towards the modes with the
largest mass. As the inverse temperature is increased the density func-
tion becomes increasingly peaked and the updates will tend to remain
con�ned to one mode and as β → ∞ will become concentrated near to
the maximum of this mode. Although there is no guarantee this heur-
istic will �nd a global optima, empirically it has been found to be useful
in practice in a range of applications.

In simulated tempering, rather than using an inverse temperature to
de�ne an optimisation procedure instead a discrete index controlling
the inverse temperature is introduced as an auxiliary variable in an
MCMC method. The variables x ∈ X on which the target distribution P

is de�ned are augmented with a discrete index variable k ∈ {0 . . .K}. A
corresponding set of inverse temperature values {

βk
}K
k=0 are speci�ed,

as with simulated annealing these chosen to form an ordered sequence
but in this case over the interval [0, 1] with

0 = β0 < β1 < β2 < · · · < βK = 1. (2.65)

A joint density on the target variables x and temperature index k is
then de�ned as

px,k (x ,k ) =
1
C
exp(−βkϕ (x ) − (1 − βk )ψ (x ) + wk ). (2.66)
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Algorithm 7 Simulated tempering.
Input: (xn ,kn ) : current target variables – temperature index state pair, T1 :

transition operator updating only target variables x and leaving distribution
with density in (2.66) invariant, T2 : transition operator updating only
temperature index k and leaving distribution with density in (2.66) invariant.

Output: (xn+1,kn+1) : new target variables – temperature index state pair.
1: xn+1 ∼ T1 (· | xn , kn )
2: kn+1 ∼ T2 (· | xn+1, kn )
3: return (xn+1, kn+1)

The values {wk}Kk=0 are a set of ‘prior’ weights associated with each in-
verse temperature value, and which can be used to help shape the mar-
ginal distribution on the temperature index k. As in the preceding sub-
section the energy function ϕ : X → R is de�ned as the negative log-
arithm of the unnormalised target density i.e. ϕ (x ) = − log p̃ (x ).

The function ψ : X → R de�nes a corresponding energy function
for a base distribution Q with normalised density q(x ) = exp(−ψ (x ))
with respect to µ. The base distribution is typically chosen to have a
simple unimodal density with mass covering as many of the regions of
high density under the target density in X as possible. When the target
distribution corresponds to the posterior in a Bayesian inference task,
Q is often chosen as the prior distribution on the target variables which
will typically have a simple unimodal form and be much more di�use
than the posterior. If the state space X consists of a �nite set of values,
the base distribution can be chosen to be uniform across X in which
caseψ (x ) is constant and can be omitted from (2.66).

Importantly the conditional distribution Px |k on the target variables x
for k = 0 (β0 = 0) corresponds to the base distribution Q and to the
target distribution P for k = K (βK = 1). We can therefore use the
x components of sampled chain states for which k = K to estimate
expectations with respect to the target distribution P . For intermedi-
ate values of k the conditional distribution geometrically interpolates
between P and Q . Figure 2.13 shows a simple example of this geomet-
ric bridging between a unimodal univariate base density and bimodal
target density for K = 5 inverse temperature values.

In simulated tempering, a Markov chain with an invariant distribution
corresponding to (2.66) is constructed by alternating updates of the tar-
get variables x given the current value of temperature index k, with
updates of the temperature index k given the current value of the tar-
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get variables x as summarised in Algorithm 7. For the transition oper-
ator T1 updating the target variables, any of the previously discussed
methods such as random-walk Metropolis, slice sampling or HMC can
be used. In the case of Metropolis–Hastings based updates, it may be
desirable to adjust the proposal generating mechanism to depend on
the current temperature index k as for example we might generally
expect for k corresponding to lower inverse temperatures βk and so
conditional densities px |k closer to the base density that larger moves
can be made while maintaining reasonable accept rates; as k remains
�xed this can validly be done without breaking reversibility.

In the original description of the simulated tempering algorithm in
[164], the transitions to the index variable k given �xed values of the
target variables x were performed using a random-walk Metropolis op-
erator for T2 which proposes to randomly increment or decrement k

by one (except at the end-points k = 0 and k = K where it always pro-
posed to increment and decrement respectively). For large K this can
lead to slow mixing up and down the inverse temperature scale - if the
marginal density pk is uniform we would expect O (K2) updates would
be needed to traverse the full inverse temperature range. An alternative
is to use a Gibbs sampling step with the conditional distribution Pk |x
here being a multinomial distribution with density

pk |x (k | x ) = exp(βk (ψ (x ) −ϕ (x )) + wk )∑K
k ′=0 exp(βk ′ (ψ (x ) −ϕ (x )) + wk ′ )

(2.67)

which we can tractably generate independent samples from. For arbit-
rary {βk ,wk}Kk=0 this will require explicit summation over K + 1 values
to calculate the normalising constant and so the cost of generating an
independent index will scale linearly with K .

For βk = k
K and wk = αβk ∀k ∈ {0 . . .K} for some α ∈ R, the normal-

ising constant in (2.67) takes the form of a geometric series

K∑

k=0
exp

(
ψ (x ) −ϕ (x ) + α

K

)k
= 1 + exp(ψ (x ) −ϕ (x ) + α )

1 − exp
(ψ (x )−ϕ (x )+α

K

) . (2.68)

The conditional distribution Pk |x in this case has the form of a geomet-
ric distribution with parameter exp

(ψ (x )−ϕ (x )+α
K

)
truncated to {0 . . .K}

which we can generate samples at a cost independent of K .
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The marginal distribution Pk on the index variable k has density

pk (k ) =
exp(wk )

C

∫

X

exp(−βkϕ (x ) − (1 − βk )ψ (x )) µ (dx ). (2.69)

As
∫
X
exp(−ψ (x )) µ (dx ) = 1 and

∫
X
exp(−ϕ (x )) µ (dx ) = Z we have

pk (0) =
exp(w0)

C
and pk (K ) =

exp(wK )Z
C

. (2.70)

If Z is much more than one and wk = 0 for all k ∈ {0 . . .K} then we
would have pk (K ) � pk (0) and a simulated tempering chain will tend
to spend many more iterations with k = K than k = 0. This will give
a large number of samples with which to estimate expectations with
respect to P however it will also limit the gain from using simulated
tempering over running a Markov chain in the original non-augmented
target variable space, as the chain will rarely visit the lower inverse tem-
peratures which aid exploration. Conversely if Z is much less than one,
we have pk (K ) � pk (0). In this case the chain will tend to remain at k

values corresponding to low inverse temperatures and so few samples
are available for computing expectations with respect to P .

If we could set w0 − wK = logZ we would have pk (K ) = pk (0) how-
ever for the target distributions of interest we will generally not be
able to evaluate Z and a similar result holds for the normalising con-
stants of the conditional distributions Px |k corresponding to intermedi-
ate inverse temperatures and so the appropriate values for {wk}K−1k=1 . In
general therefore it will be di�cult to identify reasonable values to set
the weights {wk}Kk=0 to a-priori. This is typically solved in practice by
using an iterative scheme [131, 164]: an initial pilot chain is run with
wk = 0 ∀k to estimate the marginal density pk by constructing a histo-
gram of counts of samples for eachk and then this histogram used to set
the weights so as to approximately �atten the marginal density.

The relationship between the marginal density pk and Z although pres-
enting challenges in terms of choosing the weights {wk}Kk=0 also how-
ever demonstrates that simulated tempering chains can be used to es-
timate Z . In particular we have that

Z = exp(w0 − wK )pk (K )

pk (0)
. (2.71)



96 approximate inference

Given the sampled states {x (n) ,k (n)}Nn=1 of a simulated tempering chain,
one way to form a consistent estimate of Z is therefore to compute the
ratio of the counts of samples with k = K to those with k = 0,

Z = lim
N→∞

exp(w0 − wK )
∑N

n=1 1{K} (k
(n) )

∑N
n=1 1{0} (k (n) )

. (2.72)

This estimate will typically have a high variance however as it uses
information only from the subset of sampled states with k = 0 or k = K .
Expanding pk as a marginalisation integral of the joint density (2.66) we
can reformulate the identity in (2.71) as

Z = exp(w0 − wK )
∫
X

pk |x (K | x ) px (x ) µ (dx )∫
X

pk |x (0 | x ) px (x ) µ (dx )
. (2.73)

This is an example of what is sometimes termed Rao-Blackwellisation

[56] and was used in [53] to suggest a Rao-Blackwellised estimator for
the normalising constant Z from the samples {x (s ) ,k (s )}Ss=1 of a simu-
lated tempering chain

Z = lim
N→∞

exp(w0 − wK )
∑N

n=1 pk |x (K | x (n) )
∑N

n=1 pk |x (0 | x (n) )
. (2.74)

This estimator uses all of the sampled chain states and will typically be
lower variance than the count-based estimator (2.72). Importantly this
estimator can still give reasonable estimates for Z when there are no
sampled states for which k = 0 (or k = K ) unlike the count-based es-
timator. This is particularly important when using an iterative scheme
to choose the weights {wk}Kk=0 as if Z � 1 or Z � 1 an initial short
pilot chain will typically remain con�ned to one end of the inverse tem-
perature scale for all iterations, giving limited count-based information
with which to update weights for subsequent iterations.

2.4 discussion

The sampling approaches to approximate inference described in this
chapter allow tractable estimation of the integrals involved in many in-
ference problems. In cases where we can generate independent samples
from the target distribution, the 1

N scaling of the variance of Monte
Carlo estimates of expectations with the number of samples N allows
computation of estimates with su�cient accuracy for most practical
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purposes without the exponential blow-up in computation of quadrat-
ure methods with dimensionality.

Generating independent samples from arbitrary distributions on high-
dimensional spaces is often infeasible however. Transform sampling
methods o�er a scalable approach for only a few special cases such as
the multivariate normal distribution. Rejection sampling is more gener-
ally applicable however the usually exponential decrease in the propor-
tion of accepted samples with dimension means that it is only useful in
relatively low-dimensional distributions. Simple importance sampling
schemes similarly scale poorly with dimensionality, with mismatch bet-
ween the proposal and target distribution in high-dimensions meaning
the variance of the resulting estimators is impractically high.

Although these Monte Carlo methods are not directly applicable to
performing inference in the complex probabilistic models of interest,
they are still useful building blocks and will appear as components of
the methods we will discuss in the rest of this thesis. In Chapter 3 we
will discuss MCMC methods which use importance sampling estimators
of the target density to construct the chain. The simulator models dis-
cussed in Chapter 4 can be considered an extension of the idea of trans-
form sampling, with a complex series of deterministic operations trans-
forming inputs from a pseudo-random number generator to simulated
values for the variables in a probabilistic model. One of the standard
approaches for performing approximate inference in simulator models
is based on rejection sampling, and our discussion of the poor scaling
of rejection sampling with dimensionality will be relevant when con-
sidering the limitations of these methods.

Markov chain Monte Carlo methods o�er a more scalable approach to
inference in complex probabilistic models and are the main focus of
the work discussed in this thesis. The local perturbative updates typ-
ically employed in MCMC methods avoid the curse of dimensionality
e�ects which lead to the exponential blow up in the computational
e�ort required by methods such as rejection sampling as the dimen-
sion increases. MCMC methods such as random-walk Metropolis and
Gibbs sampling typically require minimal implementation e�ort and
have successfully applied in a wide range of settings.

For target distributions with more complex geometries however such
as due to the non-linear relationships between variables often present
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in hierarchical models or the multimodal distributions typically arising
from inference in undirected models, MCMC methods such as random-
walk Metropolis and Gibbs sampling can exhibit pathological behaviour
that means impractically long chains are needed for MCMC estimators
to give useful results. In these cases methods which exploit more in-
formation about the geometry of the distribution in each update can
o�er signi�cant improvements in e�ciency and robustness.

The introduction of auxiliary variables in to the chain state has proved
a particularly successful approach for proposing MCMC methods which
can accelerate the exploration of complex target distributions. We con-
cluded this chapter by reviewing three auxiliary variable MCMC meth-
ods that will be central to the contributions made in this thesis: slice
sampling, Hamiltonian Monte Carlo and simulated tempering.

Slice-sampling o�ers a very generally applicable approach for construct-
ing Markov chains which are able to adapt the scale of proposed moves
to the local geometry of the target distribution. The information con-
trolling this adaptation comes from allowing multiple evaluations of
the target density per update in slice sampling compared to for ex-
ample the single target density evaluation per iteration of random-walk
Metropolis methods. The overhead from these multiple density eval-
uations will mean that for target distribution in which the geometry
of the density does not vary signi�cantly across the space, well-tuned
random-walk Metropolis updates will often be able to outperform slice
sampling transition operators in terms of the computational cost per ef-
fective independent sample. However the ease of use of slice sampling
methods, with typically minimal user tuning required of the free al-
gorithmic parameters, and increased robustness to distributions with
more complex geometries, are in our opinion often more important
than a potential improvement in peak e�ciency.

Hamiltonian Monte Carlo methods put a requirement of di�erentiab-
ility on the target density and so are not as widely applicable as slice
sampling approaches. When available however gradient information
can be a signi�cant help in guiding the exploration of the target space
by a MCMC dynamic. Using reverse-mode automatic di�erentiation (as
described in Appendix B) code for evaluating the exact gradients of a
density function can be automatically generated given just the de�n-
ition of the original density function and the resulting gradient func-
tion evaluated at a cost which has only a constant factor overhead over
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the cost of the original density function evaluations. When optimally
tuned HMC methods can overcome the random-walk behaviour inher-
ent to simpler MCMC methods and so o�er signi�cantly improved per-
formance in complex high-dimensional target distributions. Although
implementation of HMC algorithms is more complex than approaches
such as Gibbs sampling and random-walk Metropolis and the tuning of
the algorithm parameters can be vital for good performance, the avail-
ability of e�cient, adaptive implementations in probabilistic program-
ming frameworks such as Stan [55] and PyMC3 [236] has supported the
use of HMC in a wide range of inference problems.

Simulated tempering o�ers a complementary approach to the improved
local exploration a�orded by slice sampling and HMC methods by poten-
tially improving the global exploration of challenging multimodal tar-
get distributions. As the updates to the target variables at a �xed inverse
temperature can be performed using any valid Markov transition oper-
ator applicable to the original target distribution, both slice sampling
and HMC transition operators can be used within a simulated temper-
ing chain and both potentially o�er an improved ability to adapt to
the varying geometry of the density on the target variables at di�erent
inverse temperatures compared to simpler methods such as random-
walk Metropolis. In addition to the possible improved exploration of
multimodal targets, the ability to use simulated tempering chains to
estimate an unknown normalising constant of the target density, of-
ten corresponding to a model evidence term, o�ers a further distinct
advantage over standard MCMC methods.

Although simulated tempering can provide several important bene�ts,
use of the algorithm in statistical applications seems relatively rare in
practice. This can perhaps be partially attributed to the need to tune
the values of the free inverse temperature βk and prior weight wk para-
meters introduced in the algorithm, with any improvement in explor-
ation of the target distribution strongly dependent on the simulated
tempering chain being able to move up and down the inverse temperat-
ure range. Further the lack of standard implementations in frameworks
such as Stan and PyMC3, and relative wastefulness of the standard ap-
proach of estimating expectations with respect to the target distribu-
tion by averaging over only sampled states corresponding to an inverse
temperature of βK = 1, add further discouragements to widespread use
of the algorithm.
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2.5 outline of contributions

Having now completed our reviews of both the inference tasks and
MCMC methods underlying the work in this thesis, we are now in a po-
sition to outline the contributions made in the rest of the thesis.

Inference in hierarchical models is often a challenging task for MCMC

methods due to the strong dependencies between the global and local
latent variables and resulting complex geometry of the target density
on the model variables. We will sometimes only be directly interested
in inferring plausible values for the global latent variables in the model
but will typically be unable to analytically integrate out the local latent
variables. The pseudo-marginal framework shows how an unbiased es-
timator of the marginal density on the global latent variables can be
used to construct a Metropolis–Hastings method for sampling values
of the global latent variables. Pseudo-marginal Metropolis–Hastings
methods however su�er from ‘sticking’ pathologies where chains reject
updates over long series of iterations and are challenging to tune.

In Chapter 3 we demonstrate that by including the auxiliary variables
used in the density estimator in the chain state alternative transition
operators can be used in a pseudo-marginal setting, including adapt-
ive rejection-free methods like slice-sampling. The resulting auxiliary

pseudo-marginal methods are able to prevent the sticking artifacts com-
mon to existing pseudo-marginal methods, are easier to tune and in
some cases give signi�cant improvements in sampling e�ciency.

We described simulator models as a challenging setting for approx-
imate inference methods in Chapter 1 due to the lack of an explicit
target density on the model variables. Approximate Bayesian compu-

tation (ABC) is a class of methods for performing inference in such
models by conditioning on simulated observations being ‘close’ rather
than exactly equal to the observed data. ABC methods based on both re-
jection sampling and pseudo-marginal Metropolis–Hastings have been
proposed, but both su�er from curse of dimensionality e�ects that mean
further approximation is typically required by reducing the simulated
observations and data to lower-dimensional summary statistics.

In Chapter 4 we show that any generative model can be considered as
a deterministic transformation of a vector of auxiliary variables from a
known distribution. We use this intuition to demonstrate how MCMC
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methods such as slice sampling and HMC can be applied within an
ABC setting, the improved performance of these methods compared to
approaches based on pseudo-marginal Metropolis–Hastings meaning
that in some cases ABC inference can be performed without the need
for summary statistics. For a restricted class of di�erentiable generat-
ive models we derive an expression for conditional expectations un-
der the model in terms of an integral against a distribution de�ned
on an implicitly-de�ned manifold. We use this to propose a novel con-
strained HMC method for performing approximate inference in di�er-
entiable generative models without an explicit density function on the
model variables. This method allows computationally tractable infer-
ence when conditioning high-dimensional simulated observations be-
ing arbitrarily close to observed data.

Simulated tempering provides an approach for tackling two of the key
challenges identi�ed in Chapter 1: performing inference in multimodal
distributions such as those de�ned by undirected models like the Boltz-
mann machine; estimating the model evidence normalising constant
terms required for model comparison. However as noted above simu-
lated tempering is used relatively rarely in practice. In the above dis-
cussion we suggested factors which may have discouraged more wide-
spread adoption of the algorithm: the di�culty in choosing the set of
inverse temperature and prior weight values to use, the relative ine�-
ciency of using only a small proportion of the samples in a chain to
compute estimates and the lack of support for simulated tempering
methods in existing inference packages.

In Chapter 5 we suggest approaches to overcome these issues. We pro-
pose using a continuous auxiliary variable to control the inverse tem-
perature rather than a discrete index. This sidesteps the need to choose
a set of inverse temperature values and allows the auxiliary variable to
be jointly updated with the target variables in a HMC update making
it straightforward to use tempering within existing HMC-based infer-
ence packages. Further we show how all of the samples in a tempered
chain can be used to estimate expectations with respect to the target
distribution. Finally we demonstrate that variational inference methods
provide a natural approach for choosing the base distribution bridged
to during tempering and show that cheap biased approximations to the
normalising constant of the target density can be exploited to help �at-
ten the marginal density on the inverse temperature.
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3 P S E U D O - M A R G I N A L M E T H O D S

The MCMC methods considered in Chapter 2 provide a widely applic-
able set of tools for performing inference in probabilistic models where
we can evaluate a, potentially unnormalised, density function for the
target distribution of interest. In some models we may not be able to
directly evaluate such a function however but instead have access to an
unbiased estimator of the target density. The pseudo-marginal frame-
work [8] allows MCMC methods to be extended to such problems.

The typical setting for pseudo-marginal methods is that a distribution
on an extended set of variables is constructed which has the target dis-
tribution as a marginal distribution. Values of a density function for the
target distribution are then estimated by using a Monte Carlo method
such as importance sampling to approximately marginalise out the ad-
ditional variables. The variables which are marginalised out may cor-
respond to latent variables speci�ed in the model but that are not of
direct interest for the inference task or variables introduced solely for
computational reasons. In both cases it will usually be possible to spe-
cify a Markov transition operator which leaves the distribution on the
extended set of variables invariant, with such schemes often being de-
scribed as data augmentation [245, 257] or auxiliary variable [83, 129]
methods. Here we will refer to any variables which are marginalised
over as auxiliary variables and the variables of interest we wish to in-
fer plausible values for as the target variables.

The density of the joint distribution on auxiliary and target variables
will often have a complex geometry with strong dependencies between
the variables and in some cases may be multimodal. This can lead to
poor exploration of the extended space by simple MCMC schemes such
as random-walk Metropolis–Hastings and Gibbs sampling [8]. The mo-
tivation for pseudo-marginal methods is that in some cases the density
of the marginal distribution on the target variables will have a sim-
pler geometry than the density of the joint distribution on the exten-
ded space and therefore be more amenable to exploration by standard
MCMC methods.
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Although in general we cannot analytically integrate out the auxili-
ary variables, the pseudo-marginal framework shows how an unbiased
estimator of the marginal density can be used within a Metropolis–
Hastings update while maintaining the asymptotic exactness of stand-
ard MCMC methods. Intuitively the lower the variance of the density
estimator the closer the behaviour of the algorithm to the case where
the auxiliary variables are analytically marginalised out. We can con-
trol the variance of the estimator both by varying the number of aux-
iliary variable samples used in the Monte Carlo estimate and by using
variance reduction methods to increase the estimator e�ciency.

By posing the problem of specifying an MCMC algorithm in terms of
designing an e�cient1 unbiased estimator of the density of interest, the
large literature on methods for constructing low-variance unbiased es-
timators can be exploited. For example comparatively cheap but biased
optimisation-based inference approaches such as Laplace’s method (see
Appendix C) can be combined with an importance sampling ‘debias-
ing’ step to produce an unbiased estimator which can then be used
in a pseudo-marginal MCMC update. This provides a way of exploit-
ing cheap but biased approximate inference methods within a MCMC

method which still gives guarantees of asymptotically exact results.

The pseudo-marginal framework has been applied to a wide range of
probabilistic models where inference might otherwise be intractable.
However the standard pseudo-marginal method, which is based on a
Metropolis–Hastings transition operator, is susceptible to ‘sticking’ be-
haviour where proposed moves are repeatedly rejected for many iter-
ations [8, 239]. The method can also be di�cult to tune as it breaks
some of the assumptions underlying standard heuristics for adapting
the parameters of Metropolis–Hastings methods.

In this chapter we will discuss an alternative formulation of the pseudo-
marginal framework which bridges between the approach of directly
specifying a Markov transition operator on the extended state space
which includes the auxiliary variables and the pseudo-marginal method
where the auxiliary variables are approximately marginalised out. This
auxiliary pseudo-marginal framework still allows the intuitive design
of pseudo-marginal algorithms in terms of identifying low-variance un-
biased estimators, while overcoming some of the issues of the pseudo-

1 We use ‘e�cient’ in a general sense here rather than the notion of a minimum-variance
unbiased estimator satisfying the Cramér-Rao lower bound [67, 220].



3.1 problem definition 105

marginal Metropolis–Hastings method. In particular it shows how more
�exible adaptive MCMC algorithms such as slice-sampling can be used
within the pseudo-marginal setting, which can improve the robustness
and ease of application of the approach by minimising the amount of
user-tuning of free parameters required.

The work summarised in this chapter is based on a collaboration with
Iain Murray which resulted in the published conference paper

• Pseudo-marginal slice sampling. Iain Murray and Matthew M.
Graham. The Proceedings of the 19th International Conference on

Arti�cial Intelligence and Statistics, JMLR W&CP 51:911-919, 2016.

Iain Murray was the main contributor of the ideas proposed in that pub-
lication and responsible for the ‘doubly-intractable’ Gaussian and Ising
model experiments in Sections 5.1 and 5.2 of the paper. We discussed
the presentation and details of the work together. My individual con-
tribution was implementing and analysing the Gaussian process classi-
�cation experiments summarised in Section 5.3 of that work, an exten-
ded version of which is reproduced in Section 3.6.2 of this chapter. The
Gaussian latent variable model experiments discussed in Section 3.6.1
were directly inspired by the experiments in Section 5.1 of the above
paper, but we use a di�erent latent variable model formulation for the
model here and conduct additional empirical studies of the e�ect of the
variance of the estimator on the relative performance of the algorithms
and the sensitivity of the performance of the pseudo-marginal slice
sampling algorithms to their free parameters. The text and �gures in
this chapter are all my own work, though inevitably some of the discus-
sion and analysis is similar to sections of the above publication.

3.1 problem definition

As in the previous chapter our goal is to be able to compute estimates
of expectations with respect to a target distribution of interest, that is
integrals of the form

f̄ =

∫

X

f (x ) P (dx ) =
∫

X

f (x ) p (x ) µ (dx ) (3.1)

where f : X → R is an arbitrary Lebesgue integrable function and P is
a probability distribution on a space X with density p = dP

dµ . We assume
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x z y

Figure 3.1.: Hierarchical model factor graph.

as previously that the density p may have an intractable normalising
constant C that we cannot evaluate i.e. p (x ) = p̃ (x )/C . We make the
further assumption here that we cannot directly evaluate p̃ either but
only compute an unbiased, non-negative estimate of it. More explicitly
we assume we can generate values of a non-negative random variable
p̂ from a regular conditional distribution Pp̂ |x such that

p̃ (x ) = E[p̂ | x = x ] =

∫ ∞

0
p̂ Pp̂ |x (dp̂ | x ) ∀x ∈ X . (3.2)

Note that we only require that we can generate p̂ values for a given x,
not that we can evaluate a density for Pp̂ |x. For concreteness throughout
the rest of this chapter we will assume that the target variables take val-
ues in a real-valued space X = RD and that any density on these vari-
ables is de�ned with respect to the Lebesgue measure µ = λD .

3.1.1 Example: hierarchical latent variable models

The application of pseudo-marginal methods we focus on is inference
in hierarchical probabilistic models where the unobserved variables are
split into global latent variables we are interested in inferring and local
per datapoint latent variables that we wish to marginalise over the val-
ues of, as introduced in Section 1.3.1 in Chapter 1. For notational simpli-
city we here assume all observed variables are concatenated in a single
vector y and likewise all associated local latent variables in a vector z.
The global latent variables, i.e. the target variables for inference, are
then x. A factor graph representing the factorisation across the model
variables is shown in Figure 3.1.

The target distribution P is then the posterior distribution Px |y given
�xed observed values y and the unnormalised target density is chosen
as the joint density p̃ (x ) = px,y (x ,y). We can express p̃ as a marginal
of the joint density px,y,z, which assuming the latent variables z being
marginalised over are real-valued and have a density with respect to
the Lebesgue measure can be written

p̃ (x ) = px,y (x ,y) =
∫

Z

px,y,z (x ,y,z) dz. (3.3)
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Generally this integral will not have an analytic solution. We can how-
ever form an unbiased estimate of (3.3) using importance sampling. We
de�ne a importance distributionQ which we can generate independent
samples from and with a known densityq which in general may depend
on the values of the target variables x and observations y and which
the target distribution P must be absolutely continuous with respect to.
If {z(n)}Nn=1 are a set of independent variables distributed according to
Q then we can de�ne a unbiased density estimator p̂ as

p̂ =
1
N

N∑

n=1

px,y,z (x,y, z(n) )
q(z(n) | x,y) =⇒ E[p̂ | x = x ] = p̃ (x ). (3.4)

The variance V [p̂] is proportional to 1
N and so to decrease the estimator

variance we can increase the number of importance samples used, how-
ever this comes with the trade-o� of an increased computational cost
of each density estimate. The estimator variance will also be depend-
ent on the importance distribution used. The optimal choice in terms of
minimising variance would be the conditional distribution Pz |x,y. Under
this choice the density ‘estimate’ takes the form

p̂ =
1
N

N∑

n=1

px,y,z (x,y, z(n) )
pz |x,y (z(n) | x,y)

=
1
N

N∑

n=1
px,y (x,y) = p̃ (x) (3.5)

and so is equal to the unnormalised target density independent of the
sampled z(n) values with zero variance. In reality however we will not
be able to evaluate the density of Pz |x,y nor sample from it as this is
equivalent to being able to analytically solve the integral in (3.3).

The conditional distribution Pz |x will often be tractable to sample from
and to evaluate the density of and so is a possible choice for the im-
portance distribution. Typically however Pz |x will be much less concen-
trated than Pz |x,y. This will mean samples from Pz |x will tend to fall in
low density regions of Pz |x,y, with only occasionally sampled values be-
ing in regions with high density under Pz |x,y leading to a high variance
estimator, with the problem becoming more severe as the dimension of
z increases. This can mean a large number of importance samples are
needed to achieve an estimator with a reasonable variance.

An alternative is to �t an approximation to Pz |x,y to use as the import-
ance distribution using for example one of the optimisation-based ap-
proximate inference approaches discussed in Appendix C. For example



108 pseudo-marginal methods

we could use Laplace’s method to �t a multivariate normal approxima-
tion pz |x,y (z | x ,y) ≈ N

(
z | µx ,y ,Σx ,y

)
and use this as the importance

distribution. As pz |x,y depends on x this involves �tting an approxima-
tion for each x value we wish to evaluate the density at. Although com-
putationally costly the signi�cant variance reduction brought by this
approach can make this overhead worthwhile in practice [87].

Inference in hierarchical latent variable models using an importance
sampling estimator for the marginal density is just one setting in which
pseudo-marginal methods are applied. Other applications of the frame-
work have included inference methods for dynamical state space mod-
els using a particle �lter estimator [78, 112] for the marginal density of
the observed state sequence given the model parameters [7, 61, 209],
parameter inference in ‘doubly-intractable’ distributions [184] where
an intractable normaliser depends on the variables of interest using
density estimators based on exact sampling methods [178, 181, 216] and
random series truncation [160] and approximate inference in simulator
models where the density on the simulator outputs is only implicitly
de�ned [165].

In the discussion and experiments in this chapter we will concentrate
on latent variable models and importance sampling density estimators
of the form described in this section. Examples of applying the methods
discussed here to inference in a doubly intractable distribution were
discussed in the associated conference paper [185]. Although particle
�ltering based methods are a major use case of the pseudo-marginal
framework, the associated models and estimators tend to be more com-
plex and we have chosen to avoid further expanding the theoretical
background material in this thesis by concentrating on simpler cases
here. The use of pseudo-marginal MCMC methods to perform inference
in simulator models will be a major topic of the next chapter which
speci�cally considers inference methods applicable in this setting so
we will delay discussion of models of this form till then.

3.2 pseudo-marginal metropolis–hastings

The pseudo-marginal Metropolis–Hastings method is summarised in
Algorithm 8. The term pseudo-marginal was proposed by Andrieu and
Roberts in [8] as part of an extensive theoretical analysis of the pseudo-
marginal framework. Andrieu and Roberts cite Beaumont [18] as the
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Algorithm 8 Pseudo-marginal Metropolis–Hastings.
Input: (xn , p̂n ) : current target variables – density estimate state pair, Pp̂ |x :

density estimate conditional distribution, r : proposal density for updates
to target variables.

Output: (xn+1, p̂n+1) : new target variables – density estimate state pair.
1: x∗ ∼ r (· | xn ) . Propose new values for target variables.
2: p̂∗ ∼ Pp̂ |x (· | x∗) . Estimate density at proposed x∗.
3: u ∼ U (· | 0, 1)
4: if u < r (x n | x ∗ ) p̂∗

r (x ∗ | x n ) p̂n then
5: (xn+1, p̂n+1) ← (x∗, p̂∗) . Accept proposal.
6: else
7: (xn+1, p̂n+1) ← (xn , p̂n ) . Reject proposal.
8: return (xn+1, p̂n+1)

original source of the algorithm. Special cases of the algorithm have
also been independently proposed, for example in the statistical physics
literature by Kennedy and Kuti [137] and a MCMC method for doubly
intractable distributions by Moller et al. [178].

The algorithm takes an intuitive form, with a very similar structure to
the standard Metropolis–Hastings method (Algorithm 2) except for the
ratio of densities in the accept probability calculation being replaced
with a ratio of the density estimates. Importantly the stochastic dens-
ity estimates are maintained as part of the chain state: if we reject a
proposed update on the next iteration of the algorithm we reuse the
same density estimate for the current state as in the previous iteration.
This is required for the correctness of the algorithm, but also helps
explain the sticking behaviour sometimes encountered with pseudo-
marginal Metropolis–Hastings chains. If the density estimator distribu-
tion is heavy-tailed occasionally a estimate p̂n will be sampled for the
current target state xn which is much higher than the expected value
p̃ (xn ). Assuming for simplicity a symmetric proposal density r is used
such that the accept probability ratio in Algorithm 8 reduces to p̂∗/p̂n ,
for subsequent proposed (x∗, p̂∗) pairs the p̂∗ values will typically be
much smaller than the outlier p̂n value and so the accept probability
low. This can cause a long sequence of proposed moves being rejected
until a move is proposed to an x∗ where the density is similar to p̂n or
another atypically high density estimate is proposed [8, 87, 239].

The e�ciency of the pseudo-marginal Metropolis–Hastings update de-
pends on how noisy the density estimates are and so the choice of the
number of Monte Carlo samples N in the density estimate, for example
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the number of importance samples in (3.4). AsN increases, the variance
decreases and the algorithm becomes increasingly similar to perform-
ing standard Metropolis–Hastings updates under the (marginal) target
distribution. Generally a chain will therefore mix better for larger N ,
with fewer sticking events. Typically however the computational cost
of density estimate and so Metropolis–Hastings updates also increases
with N and so there is a trade o� between this improved mixing and
increased per-update cost. Several theoretical studies have suggested
guidelines for how to tune the parameters of the algorithm to optimise
overall e�ciency.

For Monte Carlo estimators formed as an average of unbiased estimat-
ors (such as the importance sampling estimator discussed above) and
under an assumption that the computational cost of each density es-
timate scales linearly with the number of Monte Carlo samples N , it
has been shown [47, 238] that it is close to optimal to choose N = 1.
Although the variance reduction in the density estimates for larger N
generally gives higher acceptance rates and improved mixing, the gain
in the number e�ective samples in this case is usually smaller than the
increased computational cost per update.

As noted in [238] in many practical settings cases the assumption of a
linear increase in cost with the number of importance samples N will
not be valid, particularly for small N . For example most modern central

processing units (CPUs) have some degree of parallel compute capability
through multiple cores so (assuming the parallelism can be exploited)
there will usually be a non-linear increase in cost until all cores are
at full utilisation: a rough guideline in this case is to use one sample
per core. Another situation in which the linear cost assumption may
not hold is when there is a high �xed computational overhead in each
density estimate independent of the number of samples. For example
if an importance distribution is used which is dependent on the target
variables there may be computational operations such as matrix decom-
positions that can be performed once and then their cost amortised over
generation of multiple importance samples.

Particle �ltering estimators do not take the form of a simple Monte
Carlo average of independent unbiased estimates but are instead are
formed as a product of (dependent) Monte Carlo estimates [238]. The
result of [238] that using N = 1 is close to optimal (with N now the
number of particles) is therefore not applicable in this case.
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Under an alternative simplifying assumption relevant to the particle �l-
tering setting that the noise in the logarithm of the density estimator
is normally distributed and independent of the value of the target vari-
ables x and that the computational cost of each density estimate scales
linearly with N , it is argued in [79] that N should be chosen so as to
make the standard deviation of the logarithm of the density estimator
approximately equal to 1.2. In [239] a more speci�c case is considered of
pseudo-marginal Metropolis–Hastings methods using a isotropic Gaus-
sian random-walk Metropolis proposal r (x ′ | x ) = N

(
x ′ | x , λ2I

)
and

the same assumptions as [79] made of additive normal noise in the log-
arithm of the density estimator which is independent of x and a compu-
tational cost for each density estimate which scales linearly with N . It
is shown that for target distributions on a D dimensional space which
obey certain regularity assumptions as D → ∞ that computational ef-
�ciency is maximised for a choice of λ and N which gives an average
accept rate of approximately 0.07 and a noise standard deviation for
the logarithm of the density estimator of approximately 1.8.

3.3 reparameterising the estimator

As a �rst step in considering how to apply alternative transition oper-
ators to pseudo-marginal inference problems, we de�ne a reparamet-
erisation of the density estimator in terms of a deterministic function
of the auxiliary random variables used in computing the estimate. An
equivalent reparameterisation has also been used in other work analys-
ing the pseudo-marginal framework, for example [79].

In general the computation of a density estimate will involve sampling
values from known distributions using a pseudo-random number gen-
erator and then applying a series of deterministic operations to these
auxiliary random variables. Under the simplifying assumption that the
estimator uses a �xed number of auxiliary random variables, we can
therefore de�ne a non-negative deterministic function ε : X × U →
[0,∞) and a distribution R with known density ρ = dR

dν with respect
to a reference measure ν such that if u is an independent sample from
R, then p̂ = ε (x ,u) is an independent sample from Pp̂ |x (· | x ). Here R

represents the known distribution of the auxiliary variables and ε the
operations performed by the remaining estimator code given values for
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the target and auxiliary variables. We can use this to reparameterise
(3.2) as

p̃ (x ) =

∫

U

ε (x ,u) R (du) =
∫

U

ε (x ,u) ρ (u) ν (du) ∀x ∈ X . (3.6)

For example considering the importance-sampling density estimator
for a hierarchical latent variable model de�ned in (3.4), if we assume
the importance distribution is chosen to be a multivariate normal with
density N

(
µx ,y ,Σx ,y

)
then de�ning u =

[
u (1) ; · · · ;u (n)

]
as the con-

catenated vector of standard normal variables used to generate the im-
portance distribution samples, we have ρ (u) = N (u | 0, I ) and

ε (x ,u) = 1
N

N∑

n=1

px,y,z (x ,y,Lx ,yu (n) + µx ,y )

N
(
Lx ,yu (n) + µx ,y | µx ,y ,Σx ,y

) , (3.7)

where Lx ,y is the lower triangular Cholesky factor of Σx ,y .

Rather than de�ning the chain state in the pseudo-marginal Metropolis–
Hastings update as the target state – density estimate pair (x , p̂), we
can instead replace the density estimate p̂ with the auxiliary random
variables u drawn from R used to compute the estimate. As p̂ is a de-
terministic function of x and u these two parameterisations are equi-
valent. The implementation in Algorithm 8 can be considered a prac-
tically motivated variant that avoids the u values needing to be stored
in memory and in fact means they do not need to be explicitly de�ned
in the algorithm at all.

While the formulation of the update in Algorithm 8 is the more useful
for implementation purposes, showing the correctness of the update
is simpler when considering the chain state as (x ,u). We will brie�y
go through this derivation now as it provides some useful insights in
to the pseudo-marginal Metropolis–Hastings algorithm that will help
motivate our alternative proposed approaches.

From (3.6) we know that a distribution on X × U with density

π (x ,u) = 1
C
ε (x ,u) ρ (u) (3.8)

will have the target distribution onX as its marginal distribution. Show-
ing that the transition operator de�ned by Algorithm 8 leaves a distribu-
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tion with density corresponding to (3.8) invariant is therefore su�cient
for ensuring the correctness of the algorithm.

The transition operator corresponding to Algorithm 8 has a density

t(x ′,u ′ | x ,u) = r (x ′ | x )ρ (u ′)α (x ′,u ′ | x ,u) + δ (x − x ′) δ (u −u ′)
(
1 −

∫

U

∫

X

r (x ′ | x )ρ (u ′)α (x ′,u ′ | x ,u) µ (dx )ν (du)
)
,

with the accept probability α being de�ned here as

α (x ′,u ′ | x ,u) = min
{
1, r (x | x

′)ε (x ′,u ′)
r (x ′ | x )ε (x ,u)

}
. (3.9)

As in Chapter 2 it is su�cient to show the non self-transition term
in this transition density satis�es detailed balance with respect to the
target density (3.8) as self-transitions leave any distribution invariant.
We have that for x , x ′, u , u ′

t(x ′,u ′ | x ,u) π (x ,u)
=

1
C
r (x ′ | x ) ρ (u ′) α (x ′,u ′ | x ,u) ε (x ,u) ρ (u)

=
1
C
ρ (u ′) ρ (u) min{r (x ′ | x ) ε (x ,u), r (x | x ′) ε (x ′,u ′)}

=
1
C
r (x | x ′) ρ (u) α (x ,u | x ′,u ′) ε (x ′,u ′) ρ (u ′)

= t(x ,u | x ′,u ′) π (x ′,u ′),

(3.10)

and so the transition operator corresponding to Algorithm 8 leaves the
target distribution invariant.

We can equivalently consider Algorithm 8 as a standard Metropolis–
Hastings transition operator on a target distribution with density (3.8)
using a proposal r (x ′ | x )ρ (u ′) i.e. perturbatively updating the x values
and independently resampling the u values. Substituting this proposal
density and target density into the standard Metropolis–Hastings ac-
cept ratio recovers the form used in the pseudo-marginal variant,

r (x | x ′)ρ (u) 1
C ε (x

′,u ′) ρ (u ′)
r (x ′ | x )ρ (u ′) 1

C ε (x ,u) ρ (u)
=
r (x | x ′)ε (x ′,u ′)
r (x ′ | x )ε (x ,u) . (3.11)

This formulation highlights a potential source of some of the computa-
tional issues with the pseudo-marginal Metropolis–Hastings algorithm.
In high-dimensional spaces generally we would expect independent
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Algorithm 9 Auxiliary pseudo-marginal framework.
Input: (xn ,un ) : current target variables – auxiliary variables pair, T1 : trans-

ition operator updating only auxiliary variables u and leaving distribution
with density in (3.8) invariant, T2 : transition operator updating only target
variables x and leaving distribution with density in (3.8) invariant.

Output: (xn+1,un+1) : new target state – auxiliary variables pair.
1: un+1 ∼ T1 (· | xn , un )
2: xn+1 ∼ T2 (· | xn , un+1)
3: return (xn+1, un+1)

Algorithm 10 Auxiliary pseudo-marginal MI + MH.
Input: (xn ,un ) : current target – auxiliary variables state pair, ε : estimator

function for density of target distribution, ρ : density of estimator’s auxiliary
variable distribution, r : proposal density for updates to target state.

Output: (xn+1,un+1) : new target – auxiliary variables state pair.
1: u∗ ∼ ρ (·) . T1: MI update to auxiliary variables.
2: v ∼ U (· | 0, 1)
3: if v < ε (x n ,u∗ )

ε (x n ,un ) then
4: un+1 ← u∗
5: else
6: un+1 ← un
7: x∗ ∼ r (· | xn ) . T2: MH update to target variables.
8: w ∼ U (· | 0, 1)
9: if w < r (x n | x ∗ ) ε (x ∗ ,un+1 )

r (x ∗ | x n ) ε (x n ,un+1 ) then
10: xn+1 ← x∗
11: else
12: xn+1 ← xn
13: return (xn+1, un+1)

resampling of a subset of the variables in a Markov chain state from
their marginal distribution for a proposed Metropolis–Hastings move
to perform poorly [186]. Unless the variables being independently res-
ampled have little or no dependency on the rest of the chain state,
the marginal distribution will be signi�cantly di�erent from the condi-
tional distribution given the remaining variables and proposed values
from the marginal will be often be highly atypical under the conditional
and so have a low probability of acceptance.

3.4 auxiliary pseudo-marginal methods

The observation that the pseudo-marginal Metropolis–Hastings update
corresponds to a special case of the standard Metropolis–Hastings al-
gorithm with independent proposed updates to the auxiliary random
variables suggests the possibility of using alternative transition oper-
ators within a pseudo-marginal context. A particularly simple frame-



3.4 auxiliary pseudo-marginal methods 115

work is to alternate updates to the target state x given the auxiliary
variablesu and to the auxiliary variablesu given the target state x . We
refer to this scheme as the auxiliary pseudo-marginal (APM) framework
and summarise it in Algorithm 9.

A simple example of an APM method is formed by alternatingMetropolis

independence (MI) updates to the auxiliary variables given the target
variables using R as the proposal distribution with Metropolis–Hastings

(MH) updates to the target variables given the current auxiliary vari-
ables; this variant is described in Algorithm 10. Following the conven-
tion of [185] we name this method APM MI+MH for short and will in
general use the form APM [t1]+[t2] to name APM methods where [t1]
and [t2] are abbreviations for the types of the transition operators T1

and T2 respectively.

The APM MI+MH method retains the black-box nature of the original
pseudo-marginal (PM) MH algorithm by requiring no explicit knowledge
of the auxiliary random variables used in the density estimate provid-
ing we can read and write the internal state of the PRNG used by the
estimator. This can be achieved for example using the .Random.seed

attribute in R and the get_state and set_state methods of a NumPy

RandomState object. We then only need to store the PRNG state associ-
ated with each target density estimator evaluation and restore a previ-
ous state if we wish to estimate the density at a new target state with the
same set of auxiliary variables as used for a previous evaluation.

Any PM MH implementation can easily be converted in to a APM MI+MH

method as the two algorithms require exactly the same input objects
with the APM MI+MH method simply splitting the original single MH step
into two separate propose-accept steps. The APM MI+MH method intro-
duces some overhead by requiring two new evaluations of the target
density estimator per overall update (once for the new proposed auxili-
ary variables and once for the new proposed target variables) compared
to the single evaluation required for the PM MH algorithm.

Importantly however the updates to the target variables in APM MI+MH

take the form of a standard perturbative MH update. If we use a random-
walk Metropolis update then this means we can automatically tune the
step size of the updates by for example appealing to theoretical res-
ults suggesting tuning the step size to achieve an average acceptance
rate of 0.234 is optimal (in terms of maximising the number of e�ect-
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ive samples per computation time) when making perturbative moves
in high-dimensions [94]. The tuning can either be done in an initial
warm-up phase of the chain with the samples from this initial phase
not included in the �nal Monte Carlo estimates or by using online ap-
proaches which use vanishing adaptation [9, 116].

As discussed earlier for particle �ltering estimators, under certain sim-
plifying assumptions an alternative average acceptance rate of 0.07 has
shown to be optimal for PM MH with a isotropic normal random-walk
proposal in high-dimensional target distributions [239]. While this does
provide a target for tuning the step-size of a standard PM MH update in
the cases where it is relevant, the APM MI+MH update may often be
easier to tune in practice. The 0.07 target accept rate is predicated on
the variance of the density estimator having been tuned, via the num-
ber of Monte Carlo samples, such that log density estimates have a
standard deviation of approximately 1.8. In general tuning the density
estimator variance can be non-straightforward as in real problems it
will typically vary depending on x and it is not clear which value or
values to use to measure the variance at, potentially requiring an addi-
tional preliminary run to �nd a suitable x value to tune at. Further the
non-constant estimator variances found in practice will tend to give an
accept rate which varies in mean and variance across the target space.
This gives a noisy signal for adaptive algorithms to tune the step-size
by, potentially requiring slow adaptation for stability.

In contrast the APM MI+MH method decouples the MI auxiliary updates,
which have an acceptance rate controlled by the variance of the density
estimate2 and so N , and the MH target variables updates which have an
acceptance rate which is controlled by the proposal step-size λ. The two
distinct accept rates provide independent signals to tune the two free
parameters N and λ by, and which individually will generally be less
noisy than the single combined accept rate of the PM MH update.

In density estimators which are simple Monte Carlo averages and when
the cost of the estimator scales linearly with the number of Monte Carlo
samples N such that the results of [238] apply and a choice of N = 1
is close to optimal, the additional signal provided by the accept rate

2 During the MI update to the auxiliary variables the target variables x are held �xed and
a proposed new set of auxiliary variable valuesu∗ and so density estimate p̂∗ = ε (x ,u∗)
independently sampled. If the variance of the density estimate tends to zero the ratio
of p̂∗ to the previous estimate p̂ which determines the accept probability of the MI step
tends to one.
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of the MI updates to the auxiliary variables is of less direct relevance.
However as noted previously, in practice often the linear estimator cost
assumption will not hold for small N , due to utilisation of parallel com-
putation or high �xed costs. In these cases we may still wish to use the
MI accept rate to adjust N so that the accept rate is above some lower
threshold: although a low N (and so high estimator variance and low
MI step accept probability) may be preferable in the asymptotic regime
as the number of samples tends to in�nity, in practical settings with
�nite length chains it can be that an overly high density estimator vari-
ance can lead to very low accept rates for the auxiliary variable updates
such that in a �nite length chain the number of updates to the auxiliary
variables is very low (or even zero), potentially leading to biases in the
marginal distributions of the sampled target variables.

3.5 pseudo-marginal slice sampling

Rather than using a MH update to the target variables, the APM frame-
work also makes it simple to apply alternative transition operators to
pseudo-marginal inference problems. A particularly appealing option
are the linear and elliptical slice sampling (SS) algorithms discussed in
Chapter 2 (Algorithms 4 and 5); when combined with MI updates to the
auxiliary variables we term such methods APM MI+SS. Slice sampling al-
gorithms automatically adapt the scale of proposed moves and so will
generally require less tuning than random-walk Metropolis to achieve
reasonable performance and also cope better in target distributions
where the geometry of the density and so appropriate scale for pro-
posed updates varies across the target variable space.

Slice sampling updates will always lead to a non-zero move of the tar-
get variables on each update providing for �xed values of the auxiliary
variables the estimator function ε is a smooth function of the target
variables. In such cases APM MI+SS chains will not show the ‘sticking’
artefacts in the traces of the target variables common to PM MH chains.
As the auxiliary variables are still being updated using Metropolis in-
dependence transitions however they will still be susceptible to having
proposed moves rejected, therefore the accept rate (and traces if avail-
able) of the auxiliary variables updates should also be monitored to
check for convergence issues.
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The APM MI+MH and APM MI+SS methods, although o�ering advantages
over the standard PM MH method, do not address the issue that pro-
posing new auxiliary variable values independently of their previous
values can perform poorly in high dimensions. Even weak dependence
between the auxiliary variables and target variables will mean that in
high-dimensions the typical set of the marginal auxiliary variable distri-
bution R used as the proposal distribution will di�er signi�cantly from
the typical set of the conditional distribution on the auxiliary variables
given the target variables values. This conditional distribution is used
to decide acceptances and so the accept probability of proposed updates
to the auxiliary variables will be small.

One way of increasing the probability of proposed updates to the auxili-
ary variables from R being accepted is to increase the number of Monte
Carlo samplesN used in the estimator. For concreteness we will assume
we use the importance sampling estimator (3.4) for inference in a hier-
archical latent variable model with a multivariate normal importance
distribution q(z | x ,y) = N

(
z | µ,LLT

)
(in general µ and L will depend

on x andy but we leave this dependence implicit for notational simpli-
city). Using the reparameterisation of the estimator in (3.7), the target
density (3.8) on the auxiliary and target variables takes the form

π (x ,u) = 1
NC

N∑

n=1

px,y,z (x ,y,Lu (n) + µ)

N
(
Lu (n) + µ | µ,LLT

)
N∏

n=1
N

(
u (n) | 0, I

)
. (3.12)

Using that C = py (y) and N
(
Lu + µ | µ,LLT

)
= |L|−1N (u | 0, I) this

can be manipulated into the form

π (x ,u) =
px |y (x |y)
N |L|−1

N∑

n=1

pz |x,y (Lu (n) + µ | x ,y)
N

(
u (n) | 0, I

)
N∏

n=1
N

(
u (n) | 0, I

)
.

By separating out the terms involving a single auxiliary variable sample
u (m) , the conditional density onu (m) given the remaining auxiliary vari-
able samples can be shown to take the form of a mixture

π
(
u (m) | x , {u (n)}n,m

)
∝

pz |x,y (Lu (m) + µ | x ,y) + w
(
x , {u (n)}n,m

)
N

(
u (m) | 0, I

) (3.13)

with w

(
x , {u (n)}n,m

)
=

∑

n,m

*.,
pz |x,y (Lu (n) + µ | x ,y)
N

(
u (n) | 0, I

) +/-.
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The sum of the importance weights in w will grow with N (for inde-
pendent u (n) ∼ N (· | 0, I) ∀n , m it would have an expected value
(N − 1) |L|) and so for large N the second term in the mixture will in-
creasingly dominate and the conditional density on u (m) will tend to
N

(
u (m) | 0, I

)
and independence fromx . Therefore as we increaseN we

would expect independently re-sampling the auxiliary variables from
R in a MI step to have an increasing probability of acceptance.

Although non-rigorous, this analysis also gives an intuition to why the
pseudo-marginal method can provide an advantage over directly per-
forming MCMC in the joint space of x and z in hierarchical latent vari-
able models: if the conditional density on the local latent variables pz |x,y
has a challenging geometry, for example it is multimodal, then MCMC

transition operators based on local moves working in the (x, z) space
are likely to mix poorly for example by getting stuck in a single mode
or only being able to make very small moves per update. If we instead
reparameterise in terms of a set of auxiliary variables {u(n)}Nn=1, then
we are able to maintain the correct marginal distribution on the tar-
get variables x while working with a distribution on an extended space
which becomes increasingly tractable to sample from as we increase N ,
with the individual auxiliary variable samples u(n) individually having
conditional densities which only weakly depend on pz |x,y.

While we can always increase N to the point where independently pro-
posing updates to the auxiliary variables from R will have a reasonable
probability of acceptance, this will also increase the computational ex-
pense of each update. Rather than proposing new values for the auxil-
iary variables independently of their previous values, an obvious idea
is to take a more standard MCMC approach by using local perturbative
updates which leave the overall target distribution (3.8) invariant. For
N = 1 this equivalent to performing MCMC directly in a non-centred re-
parameterisation [203] of the joint (x, z) space by alternating updates
of the target and auxiliary (latent) variables. For N > 1 we potentially
gain from the conditional distribution on the auxiliary variables being
easier for MCMC algorithms to explore though with an increased com-
putational cost per update.

One option is to use a MH method such as random-walk Metropolis to
update the auxiliary variables. While with a well tuned proposal distri-
bution this approach can work well, it adds further tuning burden to
the user which might outweigh any e�ciency gains. For problems in
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Figure 3.2.: Illustration of re�ective linear slice sampling in two dimensions.
The orange circular marker represents the current state and the
light �lled orange region the density slice at the sampled slice
height (see explanation of Algorithm 4 in Chapter 2 for details).
A random slice line direction vector v is sampled from some dis-
tribution as in Algorithm 4, for example with elements independ-
ently sampled fromN (0, 1) orU (−1, 1). This de�nes a line passing
through the current point (green-blue line in Figure), with im-
portantly in this case the line re�ected at the boundaries of the
hypercube (square in this two-dimensional case). An initial bracket
of a speci�ed width is randomly placed around the current point
on the line. The algorithm then proceeds as in the standard linear
slice sampling algorithm by repeatedly proposing a point in the
current bracket and accepting if on the slice (in orange region, for
example the green circle) or rejecting and shrinking the bracket if
o� the slice (outside orange region, for example the red cross).

which we can reparameterise the density estimator as a deterministic
function of a vector of standard normal draws so that ρ (u) = N (u | 0, I),
an appealing option is to use elliptical slice sampling (Algorithm 5) to
update the auxiliary variables. The elliptical slice sampling algorithm
has no free parameters for the user to choose and initially proposes
moves to points nearly independent of the current values [183] so if the
conditional distribution of the auxiliary variables is well approximated
by the normal marginal distribution R, elliptical slice sampling should
perform similarly to a MI update. Using the adaptive bracket shrinking
procedure discussed in Chapter 2 the elliptical slice sampler is also how-
ever able to exponentially back-o� to smaller proposed moves around
the current state if the bold initial proposal is not on the slice. Provid-
ing for �xed values of the target variables the target density (3.8) is a
smooth function of the auxiliary variables, the slice sampling procedure
will always lead to a non-zero update of the auxiliary variables.
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If the auxiliary variables are instead marginally distributed as independ-
ent standard uniform variables3 i.e. ρ (u) = ∏

i U (ui | 0, 1), one option
is to reparameterise these as independent standard normal variables
which are then mapped through the normal CDF. We can then run el-
liptical slice sampling in the transformed normal space. In general eval-
uation of the normal CDF is a relatively expensive operation and the
distortion induced by pushing through the CDF may in some case map
a distribution with a density with relatively simple geometry in the
uniform space to a density with more complex geometry in the nor-
mal space. An alternative is to therefore perform linear slice sampling
directly in the uniform auxiliary variable space.

A small subtlety is that the target distribution on the auxiliary variables
will only have support on the unit hypercube in this case. We can adjust
Algorithm 4 for this setting by replacing Line 8 in the Algorithm with
x∗ ← Reflect(xn + λv) (and the likewise the corresponding equival-
ent expressions in the step-out routine in Lines 17 and 20), where the
Reflect function is de�ned elementwise by

function Reflect(u)
v ← u mod 2
return v 1[0,1) (v) + (2 − v) 1[1,2) (v)

The re�ection transformation de�ned by this function has a unit Jac-
obian determinant and maintains reversibility and so the re�ective slice
sampling transition leaves the uniform distribution on the slice invari-
ant. An illustrative schematic of a re�ective linear slice sampling trans-
ition in two dimension is shown in Figure 3.2. Re�ective variants of
slice sampling are discussed in [190] and [80].

3.6 numerical experiments

We will now discuss the results of two empirical studies in to the per-
formance of the proposed auxiliary pseudo-marginal methods. Further
experiments applying some of the proposed methods in a simulator
model inference setting will be discussed in Chapter 4.

3 The auxiliary variables in this case could for example represent all the standard uniform
draws from the PRNG that are used to generate random variables in the estimator using
the rejection and transform sampling routines discussed in Chapter 2.
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3.6.1 Gaussian latent variable model

As a �rst numerical example we consider inference in a hierarchical
Gaussian latent variable model. In particular we assume a model with
the factorisation structure shown in Figure 3.1 with

px (x ) = N (x | 0, I), pz |x (z | x ) =
M∏

m=1
N

(
z (m) | x ,σ 2I

)
,

and py |x,z (y | x ,z) =
M∏

m=1
N

(
y (m) | z (m) , ϵ2I

)
.

(3.14)

We used σ = 1 and ϵ = 2 in the experiments and generate M = 10
simulated observed values {y (m)}Mm=1, each of dimensionality D = 10.
We assume we wish to infer plausible values for the D-dimensional
vector x consistent with the observed y and so the target distribution
for inference has density p (x ) = px |y (x |y). Here because of the self-
conjugacy of the Gaussian distribution, the marginalisation over the
local latent variables z can be performed analytically to give

px |y (x |y) = N *,x
������

1
M + σ 2 + ϵ2

M∑

m=1
y (m) , σ 2 + ϵ2

N + σ 2 + ϵ2
I+-. (3.15)

Although exact inference is therefore tractable in this case, we apply
pseudo-marginal MCMC methods to allow us to study the performance
of the methods in a case where we have a ground-truth for the infer-
ences to check convergence against.

We use an importance sampling estimator of the form given in (3.4)
using Pz |x as the importance distribution i.e.

q
(
{z (m)}Mm=1 | x , {y (m)}Mm=1

)
=

M∏

m=1
N

(
z (m) | x ,σ 2I

)
. (3.16)

As this importance distribution does not take in to account the ob-
served values {y (m)}Mm=1 it results in a relatively high-variance import-
ance sampling estimator of the target density with a variance which
depends on the values of the target variables x . Therefore although ex-
act inference in this example is tractable and the target distribution has
a simple isotropic geometry, in this pseudo-marginal formulation the
model still has some of the key features which can pose challenges to
pseudo-marginal inference algorithms.
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For the auxiliary pseudo-marginal methods, we use a reparameterisa-
tion of the estimator equivalent to (3.7), using the standard normal
variables used to generate samples from Pz |x as the auxiliary variables,
resulting in an auxiliary variable marginal distribution with density
ρ (u) = N (u | 0, I) and an estimator function ε

ε (x ,u) = N (x | 0, I)
N

N∑

n=1

M∏

m=1
N

(
y (m) | σu (n,m) + x , ϵ2I

)
, (3.17)

with u =
[
u (1,1) ; . . . u (1,M ) ;u (2,1) . . . u (N ,M )

]
∈ RNM .

3.6.1.1 Pseudo-marginal Metropolis–Hastings

We �rst applied the PM MH algorithm to perform inference in this model,
using an isotropic normal random-walk proposal distribution for the
updates to the target variables, i.e. r (x ′ | x ) = N

(
x ′ | x , λ2I

)
. To as-

sess the impact of the choice of the proposal step size parameter λ on
sampling e�ciency, we ran 10 independent chains initialised from the
prior N (0, I) for λ values on a equispaced grid of 40 points between
0.025 and 1, running each chain for 50 000 iterations. We ran all ex-
periments for the cases of density estimators using N = 1, N = 8 and
N = 32 importance samples, with the logarithm of the density estim-
ate at the value of the target variables x used to generate the observed
values y having standard deviation 3.6 for N = 1, 1.8 for N = 8 and 1.2
for N = 32.

For all combinations of N and λ we estimated the e�ective sample size

(ESS) (as de�ned for a geometrically ergodic Markov chain in Equation
2.25 of Chapter 2) for the posterior mean of each chain using the R

CODA package [211]. We then derived two overall measures of computa-
tional e�ciency from these ESS estimates by normalising either by the
number of joint density evaluations in the density estimator (which in-
creases per iteration with the number of importance samples N ) or the
wall clock run time of the chains in seconds. The results are plotted
in Figure 3.3. Each pair of plots in a row corresponds to a particular
number of importance samples. In each row the left column shows the
ESSs normalised by the run time and the right column by the number
of density evaluations, with the green curves representing the mean of
these values across all the chains and the �lled region plus and minus
one standard deviation (note the standard deviation rather than stand-
ard error of mean was used as in some of the plots the standard error
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(a) N = 1
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(b) N = 8
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(c) N = 32

Figure 3.3.: Results of Gaussian latent variable model PM MH chains. The plots
in each row show both the estimated ESS normalised by either the
compute time (green, left column) or number of density estimator
evaluations (green, right column) and average acceptance rate of
MH updates (orange), versus the isotropic random-walk proposal
step-size λ for the MH updates to the target variables. The top row
shows the case for a density estimator using N = 1 importance
sample, middle row for N = 8 and the bottom row for N = 32.
In all cases the curves show mean values across 10 independent
chains initialised from the prior and �lled region show ±1 standard
deviation.
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was too small to be easily visible). On each axis as well as the norm-
alised ESS, the average accept rate across the chains is also plotted in
orange (with scale shown on the right vertical axis), with again the
curves showing the mean value across the chains and the �lled regions
plus and minus one standard deviation.

The results of [238] suggest that asymptotically using N = 1 import-
ance sample should be optimal in this case assuming a linear increase
in the cost of generating each sample with N . The measure of computa-
tional e�ciency used in [238] therefore most closely corresponds to the
estimated ESS normalised by the number of density evaluations (which
scales linearly with N ), and indeed on this measure (green curves in
right column of Figure 3.3) we see that the chains using N = 1 outper-
forms the N = 8 and N = 32 cases.

The plots in Figure 3.3a and to a lesser extent 3.3b show a spurious
appearing behaviour for the smallest step sizes that the accept rate (or-
ange curve) seems to initially increase as the step size is made larger,
contrary to what we would reasonably expect. This anomaly can be
ascribed to a lack of convergence in the chains with small step sizes
due to the sticking behaviour discussed previously. For the N = 1 case,
because of the relatively high density estimator variance, the chains are
prone to getting stuck for thousands of iterations at a time. The estim-
ator variance is dependent on the values of the target variables x and
generally seems to be lower for values typical under the posterior. As
the chains are initialised from the prior, they tend to therefore initial-
ised in regions in which the estimator variance is higher than typical
often leading to long sticking periods near the start of the chain. For
the chains with small step sizes the chain is slower to ‘warm-up’ and
converge towards the typical set of the posterior distribution on the
target variables and so this propensity for sticking during the initial
warm-up period has a larger e�ect, leading to some chains rejecting
nearly all updates even though the step size is very small. This counter
intuitive behaviour of the empirical accept rates for small step sizes and
general noisiness of the dependency of the accept rate on the step size,
particularly for small N , highlights the di�culty of tuning the PM MH

updates: the low accept rates here would intuitively indicate the step
size should be made smaller but in some cases this would actually make
the measured accept rate even worse.
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(a) N = 1, λ = 0.550
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(b) N = 8, λ = 0.375
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(c) N = 32, λ = 0.400

Figure 3.4.: Example traces and histograms of PM MH chains in Gaussian latent
variable model inference task. In each row a trace of the sampled
values for the x1 target variable in the last 10000 iterations of a
PM MH Markov chain using the optimal step size for the relevant
N found from Figure 3.3 is shown in the left plot, while the right
plot shows a histogram of the samples values from the full chain
(green �lled region) against the exact marginal posterior density
(orange curve). In the histogram plots the number of samples in
the chain used to produce the plot have been adjusted to account
for the increased number of density evaluations for higher N , so
the N = 1 plot is of a chain of 3.2 × 106 samples, the N = 8 plot is
of 8 × 105 samples as the N = 32 plot of 1 × 105 samples.
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Figure 3.4 shows example traces of the x1 variable samples for chains
using density estimates with N = 1, N = 8 and N = 32 importance
samples. In each case the step size suggested to be optimal by the res-
ults in Figure 3.3 (in terms of e�ective samples per density evaluation)
has been used, and the traces shown are the last 10 000 iterations of a
longer run. Also shown are histogram estimates of the posterior mar-
ginal densities on the x1 variable using the sampled states from the
whole chain, with the total number of samples in each chain adjusted
to account for the extra computational cost of using more importance
samples, along with a curve showing the true posterior marginal dens-
ity. The propensity of the chains to stick is clearly visible in the traces
particularly for the N = 1 case, with long series of thousands of re-
jected updates at a time. This is also re�ected in the noisiness of the
marginal density estimates with spurious peaks appearing around the
states where the chain gets stuck.

When comparing instead in terms of the estimated ESS normalised by
actual chain run time (green curves in left column of Figure 3.3) the
results no longer suggest N = 1 is optimal, with the N = 8 and N = 32
cases both performing better on this measure for all step sizes. This can
be explained by the non-linear scaling of the computational cost per
update with the number of importance samples due to both overhead
from the implementation of the rest of the operations in the transition
and only partial utilisation of the parallel compute resource available
(the CPU used in the experiments had 4 cores). Although the increase in
e�ciency per actual run time for N , 1 is implementation and device
dependent, a possibly stronger reason suggested by the results to use
N > 1 is the less brittle nature of the chains behaviour, with the very
low accept rates in the N = 1 case needing long runs to smooth out the
e�ects of long series of rejections.

The results in Figure 3.3 also highlight the di�culty of tuning the pro-
posal step size when using a random-walk Metropolis PM MH update.
The optimal step size appears to possibly weakly depend on the num-
ber of importance samples used (though the noisiness of the curves
make this di�cult to determine). Further there is not a clear relation-
ship between the average accept rate and optimal step size. As previ-
ously stated the result of [94] that a step size giving an accept rate of
0.234 is close to optimal is not applicable to the update here, with this
con�rmed empirically by the fact that only the chains with the smallest
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step sizes for the N = 32 case are even able to achieve an accept rate
close to 0.234 (and are far from optimal in e�ciency). In practice we
therefore we do not have an obvious signal to tune the step size by bey-
ond running pilot chains and computing ESS estimates which is likely
to add too much cost to justify any gain in e�ciency from choosing a
better step size for subsequent chains.

3.6.1.2 Spli�ing the update

We next applied the proposed APM MI+MH algorithm to perform infer-
ence in the Gaussian latent variable model. From an implementation
perspective this simply requires the original combined update to the
auxiliary and target variables in the PM MH case to be split in to separ-
ate MI updates of the auxiliary variables given �xed target variables and
MH updates of the target variables for �xed auxiliary variables. Despite
the seemingly minor change to the form of the update, the di�erence
in the results is dramatic.

Figure 3.5 shows plots of results of an equivalent series of experiments
as used to produce Figure 3.3. In this case the horizontal axes on the
plots shows the proposal step size for the MH updates to the target
variables which as previously use an random-walk Metropolis proposal
r (x ′ | x ) = N

(
x ′ | x , λ2I

)
. Again 10 independent chains initialised from

the prior were run for each step size λ and number of importance
samples N pair, with in this case shorter chains of 20 000 iterations
used (with the known posterior means and standard deviations used
to establish that the chains had adequately converged). Again the es-
timated ESSs for estimates of the posterior mean were computed for
each chain, with the green curves in the left column of plots in Figure
3.5 showing the mean of these estimated ESSs across the chains normal-
ised by the total wall clock run time for the chain, and the right column
the ESSs normalised by the number of joint density evaluations. The av-
erage accept rate shown by the orange curves in Figure 3.5 is for the
MH update to the target variables. A separate average accept rate was
recorded for the MI updates to the auxiliary variables and was found to
not show any obvious dependency on the target variable proposal step
size, with an average accept rate of approximately 0.025 for chains with
N = 1 importance sample in the density estimates, an average accept
rate of 0.11 for chains with N = 8 and an average accept rate of 0.23 for
chains using N = 32.
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(a) N = 1
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(b) N = 8
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(c) N = 32

Figure 3.5.: Results of Gaussian latent variable model APM MI+MH chains. The
plots in each row show both the estimated ESS normalised by either
the total compute time (green, left column) or number of density
estimator evaluations (green, right column) and average acceptance
rate for the MH updates (orange), versus the isotropic random-
walk proposal step-size for the MH updates to the target variables.
The top row shows the case for a density estimator using N = 1
importance sample, middle row for N = 8 and the bottom row
for N = 32. In all cases the curves show mean values across 10
independent chains initialised from the prior and �lled region show
±1 standard deviation. The horizontal dashed lines indicate an
accept rate of 0.234 and the vertical dashed lines the corresponding
proposal step size.
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On both the time and density evaluation normalised measures of e�-
ciency the APM MI+MH chains perform signi�cantly better than the PM

MH chains. The peak ESS per density evaluation value for the N = 1 and
λ = 0.425 case is around a factor of ten higher than the corresponding
peak value for the PM MH chains, while in terms of the ESS per run time
metric the best APM MI+MH chains show around a factor four improve-
ment over the PM MH chains. While other experiments have suggested
this level of improvement is atypical, it seems reasonable to conclude
that at least in some cases the extra overhead introduced by requiring
two density estimates per overall update is worthwhile.

More importantly perhaps the curves in Figure 3.5 suggest the APM

MI+MH update is signi�cantly easier to tune. The average accept rate
of the MH updates to the target variables shows the expected monoton-
ically decreasing behaviour as the step size is increased and in general
the measured accept rates are signi�cantly less noisy than the corres-
ponding accept rates for the PM MH updates. The horizontal dashed
lines in Figure 3.5 indicate an average accept rate of 0.234 with the cor-
responding vertical dashed lines showing the estimated proposal step
size corresponding to this acceptance rate. As can be seen by both the
compute time and density evaluation normalised measures of sampling
e�ciency, the chains with proposal step sizes giving accept rates near
to 0.234 are close to optimal in e�ciency, suggesting the theoretical res-
ult of [94] holds here as suggested earlier. Further in this model at least,
this relationship seems to hold for a range of di�erent numbers of im-
portance samples and so density estimator variances. This suggests it
is valid to use standard adaptive approaches which use the average ac-
cept rate as a control signal to tune the step size of the target variables
MH proposal distribution when using the APM MI+MH update.

In further contrast to the PM MH results, the results for the APM MI+MH

chains seem to unambiguously support usingN = 1 importance sample.
On both the computation time and density evaluation normalised meas-
ures of e�ciency, the chains using one importance sample dominate
over the N = 8 and N = 32 cases. The APM MI+MH chains using a
single importance sample do not show the pathological sticking beha-
viour evident in the PM MH chains, with an example trace shown for a
step size of λ = 0.425 (which Figure 3.5 suggests is close to optimal) in
Figure 3.6a. Unlike the N = 1 PM MH trace, over the 10 000 iterations
shown the APM MI+MH seems to mix well with no obvious sticking peri-
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(a) N = 1, λ = 0.425
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(b) N = 8, λ = 0.425
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(c) N = 32, λ = 0.425

Figure 3.6.: Example traces and empirical histograms of APM MI+MH chains
in Gaussian latent variable model inference task. In each row a
trace of the sampled values for the x1 target variable in the last
10 000 iterations of a APM MI+MH Markov chain using the optimal
step size for the relevant N found from Figure 3.5 is shown in the
left plot, while the right plot shows an empirical histogram of the
samples values from the full chain (green �lled region) against the
exact marginal posterior density (orange curve). In the histogram
plots the number of samples in the chain used to produce the plot
have been adjusted to account for the increased number of density
evaluations for higher N and to account for the 2 evaluations per
update compared to PM MH to allow fair comparison with Figure
3.4, so the N = 1 plot is of a chain of 1.6 × 106 samples, the N = 8
plot is of 2 × 105 samples as the N = 32 plot of 5 × 104 samples.
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Figure 3.7.: Results of Gaussian latent variable model APM SS+MH chains (using
N = 1 importance sample). The plots in each row show both the
estimated ESS normalised by either the total compute time (green,
left column) or number of density estimator evaluations (green,
right column) and average acceptance rate for the MH updates
(orange), versus the isotropic random-walk proposal step-size λ
for the MH updates to the target variables. The curves show mean
values across 10 independent chains initialised from the prior and
�lled region show ±1 standard deviation.

ods. The example traces for the N = 8 and N = 32 APM MI+MH chains
in Figure 3.6 also seem to follow this pattern. Comparing the posterior
marginal density estimates for the x1 target variable shown in the right
column of Figure 3.6, the marginal estimates for the N = 1 case appear
the smoothest, almost indistinguishable from the curve of the true dens-
ity (to normalise for the additional density evaluations required for the
N = 8 and N = 32 cases the number of samples in the chains used
to produce the histograms was reduced accordingly). This again sug-
gests that any improvement in mixing by using N > 1 in this case is
outweighed by the cost of the additional density evaluations.

3.6.1.3 Slice sampling the auxiliary variables

For the APM MI+MH chains discussed in the previous subsection, when
using N = 1 importance sample the MI updates to the auxiliary vari-
ables were only accepted 2.5% of the time. Although this did not appear
to impede convergence of the chain in this example, more generally
low accept rates for the MI updates to the auxiliary variables may be
a cause for concern as in shorter chains this will mean the auxiliary
variables are only updated a small number of times across the chain.
As convergence of the distribution on the target variables in the chain
state to their marginal target distribution is reliant on the distribution
of the auxiliary variables in the chain state also converging, very infre-
quent updates of the auxiliary variables could potentially lead to di�-
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cult to diagnose convergence issues in the chains. Although increasing
the number of importance samples in the estimator can increase the MI

step accept rate as seen in the APM MI+MH experiments above, there is a
diminishing returns behaviour to the increase of acceptance rate with
the number of samples.

The earlier suggestion to use perturbative updates to the auxiliary vari-
ables provides an alternative approach to improve the auxiliary vari-
able mixing. We test speci�cally here the proposal to use elliptical slice
sampling updates to the auxiliary variables, which is a natural choice in
this case due to their Gaussian marginal distribution. We use the same
MH update to the target variables as in the experiments in the previous
two subsections, and again measure sampling e�ciency for di�erent
proposal step sizes λ. We only run chains using a estimator takingN = 1
importance sample in this case as we are mainly interested in using per-
turbative updates to the auxiliary variables as an alternative to having
to increase the number of importance samples to achieve reasonable
acceptance rates for MI updates to the auxiliary variables.

Results for an equivalent series of experiments as discussed in the previ-
ous two subsections for APM SS+MH chains using elliptical slice sampling
updates to the auxiliary variables are shown in Figure 3.7. In this case as
the MI updates to the auxiliary variables for the N = 1 case seemed to be
su�cient to achieve convergence, the elliptical slice sampling updates
do not seem to signi�cantly improve mixing of the target variables. The
extra overhead from the adaptive slice sampling updates means overall
computational e�ciency decreases by roughly a factor of two across
all proposal step sizes λ compared to the corresponding APM MI+MH

results for N = 1 in Figure 3.5a, with this consistent across both the
density evaluation normalised e�ciency metric and run time normal-
ised measure.

Although the slice sampling updates do not help improve the sampling
of the target variables here, the resulting auxiliary variables samples
are much more representative of their true posterior distribution (which
again can be found analytically) compared to when using MI updates.
Figure 3.8 shows traces and histograms of one of the auxiliary vari-
ables for chains computed using both the APM MI+MH and APM SS+MH

updates. The slice sampling updates give signi�cantly better mixing of
the auxiliary variables than the MI updates which due to the low ac-
cept rate remain �xed for many iterations. Although in this case this
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(a) APM MI+MH N = 1, λ = 0.425
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(b) APM SS+MH N = 1, λ = 0.425

Figure 3.8.: Example traces and histograms of an auxiliary variable in APM
MI+MH and APM SS+MH chains in Gaussian latent variable model
inference task. In each row a trace of the sampled values for the
u1 auxiliary variable in the last 10000 iterations of a Markov chain
using the optimal step size λ = 0.425 and N = 1 is shown in the
left plot, while the right plot shows a histogram of the sample
values from the full chain (green �lled region) against the exact
marginal posterior density (orange curve). In the histogram plots
the number of samples in the chain used to produce the plot have
been adjusted to account for the roughly two times increase in
the number of density evaluations per sample for the APM SS+MH
updates compared to APM MI+MH, so the APM MI+MH plot is of a
chain of 105 samples and the APM SS+MH plot is of 5 × 104 samples.



3.6 numerical experiments 135

0 5 10

0

20

40

60

80

100

120

Initial bracket width w

ES
S
pe
rr
un

tu
ne

/s
−1

0 5 10

0

20

40

60

80

100

Initial bracket width w

ES
S
pe
re

va
l.
/1
0−

4

(a) APM MI+SS (N = 1)
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(b) APM SS+SS (N = 1)

Figure 3.9.: Results of Gaussian latent variable model APM chains using linear
SS to update target variables and either MI updates to auxiliary
variables (top row) or elliptical SS updates (bottom row). The plots
in each row show both the estimated ESS normalised by either the
total compute time (left column) or number of density estimator
evaluations (right column), versus the slice sampler initial bracket
width for the linear SS updates to the target variables. The curves
show mean values across 10 independent chains initialised from
the prior and �lled region show ±1 standard deviation.

does seem to translate to an obvious improvement in convergence of
the target variables, more generally a factor two increase in run time
for the added robustness of signi�cantly improved mixing of the auxili-
ary variables seems like it will often be a worthwhile trade-o� to avoid
possible convergence issues.

3.6.1.4 Slice sampling the target variables

As a �nal set of experiments for this model, we explored the use of
slice sampling updates to the target variables with an auxiliary pseudo-
marginal framework, speci�cally linear slice sampling updates along
an isotropically sampled direction. To test the claim that the e�ciency
of slice sampling updates is less sensitive to the choice of the free initial
bracket width parameter w of the algorithm than random-walk Metro-
polis updates are to the choice of the proposal step size parameter λ, we
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ran a similar series of experiments as in the previous sub-sections to
analyse the dependency of sampling e�ciency on λ by instead varying
the initial bracket width w.

For each of 50 initial bracket width w values on an equispaced grid
between 0.2 and 10, we ran 10 independent APM MI+SS and APM SS+SS

chains (with elliptical slice sampling updates to the auxiliary variables)
initialised from the prior of 20 000 iterations each. As previously for
each set of chains for a particular w value we computed the estimated
ESSs of the chains for the estimate of the posterior mean and normal-
ised this value by both the total wall-clock run time in seconds and
total number of joint density evaluations to give two measures of over-
all e�ciency. The means and one standard deviation intervals of these
values across the 10 chains are shown for the APM MI+SS chains in Fig-
ure 3.9a and for the APM SS+SS chains in Figure 3.9b. In all cases zero
linear step-out iterations were used in the slice sampling updates to the
target variables.

The peak e�ciency achieved by the APM MI+SS chains on this problem
is less than that for the best APM MI+MH chains by a factor of around
1.5 on both measures of e�ciency. As the slice sampling updates do
more work per iteration than the MH updates this is not unexpected
as a well-tuned MH update will generally perform better than a slice
sampling update when the geometry of the target distribution is simple
(as is the case here). Importantly however the slice sampling updates
maintain a computational e�ciency that is within around 10% of the
optimal e�ciency across a wide range of initial bracket width values,
with values from w = 2 to w = 10 all seeming to perform reasonably
well in this problem. This is in contrast to the much tighter range of
proposal step size values required to get good performance with MH

updates to the target variables. The exponential back-o� to smaller
proposals provided by the adaptive bracket shrinking procedure in the
slice sampling transition means that the penalty for using an overly
large scale parameter w is much less severe than the corresponding
situation for using an overly large λ in a MH update.

The APM SS+SS chains have around half the sample e�ciency of the APM

MI+SS chains for the same bracket width w due to the additional compu-
tational cost of the elliptical slice sampling updates to the auxiliary vari-
ables. As the cost of the elliptical SS updates to the auxiliary variables
dominates over that of linear SS updates to the target variables here, the
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APM SS+SS chains have a similar per sample computational cost as the
APM SS+MH chains. The extra overhead of the SS rather than MH updates
to the target variables is minimal and so the peak sample e�ciencies of
these two methods are similar. However the APM SS+SS chains remain
close to this peak e�ciency over a much wider range of scale parameter
settings (bracket width w or proposal step-size λ).

3.6.2 Gaussian process probit regression

As a second experiment we consider a more challenging problem of
inferring the parameters of the covariance function of a latent Gaus-
sian process used to model the relationship between pairs of feature
vectors and binary target outputs. The use of PM MH for this task was
considered in [87] and shown to give signi�cant improvements over
competing MCMC methods.

As an example data set we used the Wisconsin breast cancer prediction
data set [162] from the UCI machine learning dataset repository [158]
as also used for experiments in [87]. The data {d (m) ,ym}Mm=1 consists
of pairs of vectors d (m) of K = 9 integer descriptors of individual cells
found in a �ne needle aspiration biopsy of suspect breast lumps, and a
binary class ym indicating whether the lump was later found to malig-
nant or benign. The original dataset contains 699 data-points, however
17 data-points have missing attributes so M = 682 data-points were
used in the experiments here.

To model the unknown relationship between the input descriptors and
binary class label output, a zero-mean Gaussian process prior [221]
was placed on a set of latent real-valued function values z ∈ RM .
A squared exponential covariance function was used with per-feature
length scales ` ∈ RK

>0 and output scale s ∈ R>0, with the covariance
function speci�cally de�ned as

function SqExpCov({d (m)}Mm=1, s, `, ϵ = 10−8)
for i ∈ {1 …M} do

Ci ,i ← s + ϵ
for j ∈ {1 … i − 1} do

Ci ,j ← s exp*,−
1
2
∑D

k=1

(
d (i )
k −d

(j )
k

`k

)2+-
Cj ,i ← Ci ,j

return C
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SqExpCov
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`
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Gamma(1, 1/3)
C z

N (0,C)
y

Ber(Φ (z))

Figure 3.10.: Gaussian process probit regression factor graph.

The ϵ value is a ‘jitter’ parameter to improve numerical stability [221].
This covariance functions represents an assumption that nearby d (m)

points correspond to similar z values, with the typical length-scales in
the feature space over which correlations are high determined by the
values of the elements of `. The latent variables z are assumed to de-
termine the probability of the observed binary class outputs y being
one or zero by a probit link function i.e. given z = z the binary out-
puts are modelled as having a Bernoulli distribution Ber(Φ(z)) where
Φ is the standard normal CDF function. Following [87] Gamma prior
distributions were placed on both the per-feature length-scales ` and
output-scale s covariance function parameters. The overall model is
shown as a directed factor graph in Figure 3.10.

For inference we assume we are interested in inferring the posterior
distribution on the ` and s covariance function parameters given the
observed input-output pairs, such that we could then use the inferred
plausible ` and s values to make predictions of the outputs correspond-
ing to unlabelled inputs. We de�ne the target variables for inference x
as the logarithms of ` and s so that the target distribution has support
on an unbounded space i.e. x = [log s; log `] and x ∈ R10, with a Jac-
obian determinant factor accounting for the change of variables being
included in the transformed prior (marginal) density px

px (x ) ∝ exp
(
11x1
10 −

exp(x1)
10

) 10∏

i=2
exp

(
xi − exp(xi )

3

)
. (3.18)

The unnormalised target density is then p̃ (x ) = px,y (x ,y) ∝ py |x (y | x ).
We cannot evaluate py |x as it involves an intractable marginalisation
over the latent function values z

py |x (y |x ) =
∫

Z

M∏

m=1

(
Φ(zm )ym (1 −Φ(zm ))1−ym

)
N (z | 0,C) dz. (3.19)
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One option would be to construct a Markov chain on the joint (x, z)
space with an unnormalised target density px,y,z, however strong de-
pendencies between the (transformed) covariance function parameters
x and the latent variables z makes the joint distribution di�cult for
MCMC methods to explore e�ectively [87]. As an alternative [87] pro-
poses to use the pseudo-marginal framework to construct a Markov
chain using an unbiased importance sampling estimator of p̃.

Though a Monte Carlo estimate of (3.19) can be formed by sampling
latent values z from the Gaussian process prior pz |x, as this ignores the
observed output values y this will tend to lead to a density estimator
with an unusably high variance for the purposes of use in a pseudo-
marginal update. A key insight in [87] was that much lower variance
density estimates can be computed by using an optimisation-based ap-
proximate inference method to �t a Gaussian approximation to pz |x,y
(which as discussed previously is the optimal choice for the importance
distribution in terms of minimising variance) to use as the importance
distribution. In [87] both Laplace’s method and expectation propaga-
tion are considered within this context; we concentrate on Laplace’s
method here for simplicity.

As discussed in Appendix C, Laplace’s method involves �nding the
mode of the density being approximated and then evaluating the Hes-
sian matrix of the log density at this point. An e�cient and numerically
stable implementation of a Newton–Raphson method can be used to
�nd the mode of the latent posterior for this probit regression Gaussian
process model [221, §3.4] with the latent posterior density guaranteed
to have a unique mode. Each Newton–Raphson step involves comput-
ing a Cholesky factorisation of the Hessian of the log density at the cur-
rent point which has a O (M3) computational cost. In the experiments
around 10 Newton steps were needed to achieve convergence when
�nding the mode. Evaluating the density of the Gaussian process prior
on the latent function values z also requires computing a Cholesky de-
composition of the Gaussian process covariance matrix which again
has O (M3) cost. As M = 682 these cubic cost operations will tend to
be the dominant contributor to the overall run time. As the Gaussian
process covariance and Laplace approximation to the latent posterior
both depend on the value of the covariance function parameters, the
cubic operations have to be performed each time a density estimate is
computed at a new value for the target variables.
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Once an approximate Gaussian latent posteriorN
(
µx ,y ,Σx ,y

)
has been

�tted using Laplace’s method, it can then be used as the importance
distribution in an importance sampling estimator of the form shown in
(3.4). The Cholesky factorisation Lx ,y = cholΣx ,y is computed as part
of the Laplace’s method iteration, and so can be reused to e�ciently
evaluate the importance distribution density at a O (M2) cost for each
importance sample and to generate samples from the importance dis-
tribution using z (n) = Lx ,yu (n) + µx ,y where u (n) is a sampled stand-
ard normal vector from N (0, I), this again having a O (M2) cost. This
same expression can also be used to reparameterise the estimator as a
deterministic function of a set of independent standard normal values
u = [u (1) ; u (2) . . . u (N ) ] as shown previously in (3.7).

Due to the high overhead of the cubic operations the result of [238]
that a choice of N = 1 is close to optimal does not apply here. In ex-
periments in [238] with a similar Gaussian process classi�er model
(using a logistic link function and a dataset with M = 144) it was
found computational e�ciency was approximately maximised by us-
ing N = 200 importance samples with it noted that this is around the
number required for the O (M2N ) cost of sample generation to be of
comparable magnitude to the cubic operation cost. In the example of
[238] a non-iterative approach is used to �nd a Gaussian importance
distribution hence only a single Cholesky decomposition of the import-
ance distribution covariance matrix is required. The use of an iterative
Laplace method approximation for the importance distribution here as
proposed in [87] makes it unclear whether a similar choice of the num-
ber of importance samples is reasonable here. While the even higher
overhead of the multiple cubic operations per estimator evaluation sup-
ports possibly using N ≥ M , part of the justi�cation of using an ex-
pensive procedure to �t the importance distribution is that it means
fewer importance samples are needed to achieve a low-variance dens-
ity estimator. In the experiments with the same dataset in [87], N = 1
importance sample was used and found to work well, though in that
case an isotropic covariance function was used with a single length
scale parameter such that the dimensionality of the target space was
two rather than ten as here.

In preliminary runs we found that the PM MH update had very low
accept rates however small we set the proposal step-size when using
N = 1 importance sample in the density estimator. Increasing the num-
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ber of importance samples to N = 50 gave a signi�cant improvement
in performance and overall stability with a negligible increase in run
time per update. Increasing the number of importance samples further
to N = 500 gave a further increase in e�ciency but also increased the
run time in our implementation by around one third which outweighed
the per iteration sampling e�ciency gains made. We therefore used
N = 50 importance samples for the main experiments with all meth-
ods; given the limited number of values tested this is unlikely to be
optimal but in most practical situations we would be unlikely to per-
form an exhaustive search for the optimal N . Interestingly the auxiliary
pseudo-marginal methods appeared to still be able to mix when using
N = 1 importance sample with APM MI+MH chains still able to achieve
a target accept rate in the range [0.15, 0.3] for the MH updates to the tar-
get variables. Due to the negligible increase in run time however when
using N = 50 importance samples we performed the experiments for
the APM methods with N = 50 also.

We generated Markov chains for the model using each of PM MH, APM

MI+MH, APM SS+MH and APM SS+SS for the updates. For the MH updates
to the target variables we used a Gaussian random-walk Metropolis
proposal distribution r (x ′ | x ) = N

(
x ′ | x , λ2I

)
. To set the proposal step

size λ we followed the adaptive approach used in [87], with the step
size adjusted over an initial warm-up phase of 2000 iterations, with the
average accept rate over every 100 iterations used as a control signal
to decide whether to increase or decrease the step size. Also following
[87] a target average accept rate range of [0.15, 0.3] was used4, with the
step size made smaller or larger, if the average accept rate is below or
above this range respectively during the adaptive phase. As noted in the
previous experiments, while a target rate of 0.234 for the MH updates
to the target variables in APM methods can be justi�ed theoretically
and empirically, it is not clear what the optimal choice is for PM MH

updates, with this seeming to be dependent on the estimator variance
and so number of importance samples N . While the [0.15, 0.3] target
accept rate range therefore seems reasonable for the APM methods it is
unclear whether it is a good choice for the pseudo-marginal method,
however as it was used with some success in [87] and given a lack of

4 Although in the published version of [87] it is stated a target range of [0.2, 0.3] was
used, the code accompanying the paper suggests a range of [0.15, 0.3] was used in the
experiments so we follow that instead.
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obvious alternative methods for choosing the target rate, we use it for
the PM MH updates here.

For the APM SS+MH and APM SS+SS methods we used elliptical slice
sampling for the updates to the auxiliary variables. For the slice samp-
ling update to the target variables in the APM SS+SS chains we used
linear slice sampling along a random direction vector (sampled isotrop-
ically) with a �xed initial bracket width of w = 4 and no linear step out
iterations. To account for the 2000 adaptive warm up iterations per-
formed before the main PM MH, APM MI+MH and APM SS+MH chains, for
the APM SS+SS chains we ran 1000 warm up iterations before the main
chain runs. For all four methods, 10 chains independently initialised
from the prior were run for 10 000 iterations, with both the total num-
ber of cubic operations performed and overall run time recorded to al-
low for adjustment for di�erent per iteration costs in the results.

Results of the experiments are summarised in Figure 3.11. As a �rst
measure of performance we consider the relative estimated sampling
e�ciency of the di�erent methods. For each of the 10 target variables
we estimated the ESS for the estimated mean of the variable using R

CODA [211] and normalised these values by the total number of cubic
operations performed in each chain5. The means of these values across
the 10 chains per method (and standard errors) are shown for each of
the target variables in the bar plot in Figure 3.11a.

By this ESS measure of e�ciency, the APM MI+MH and APM SS+MH chains
both consistently perform better than the PM MH chains, with they per-
forming very similarly to each other, and the APM SS+SS chains per-
form worse than all other methods. Note that as the updates to the
auxiliary variables to do not require any cubic operations (providing
the Cholesky factorisations of the Gaussian process prior covariance
and importance distribution covariance at the current target variable
values are cached from the target variable update), there is little e�ect
on the overall run time from using elliptical SS updates to the auxiliary
variables as opposed to MI updates, hence the much closer performance
here of APM MI+MH and APM SS+MH compared to the previous Gaussian
latent variable experiments. The average accept rate of the MI updates

5 The mean chain run time per cubic operation performed was 0.0184 ± 0.00007 s for PM
MH, 0.0187 ± 0.00014 s for APM MI+MH, 0.0196 ± 0.00012 s for APM SS+MH and 0.0184 ±
0.00013 s for APM SS+SS so using the cubic operation count as a proxy for overall
computational cost seems reasonable here and removes the e�ect of any variable
background system processes on the wall-clock run times.
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(a) Sampling e�ciency. ESS estimates for each of 10 target variables normalised
by the number of cubic cost operations performed per chain. The bars
show the means values across 10 independent chains with markers for ±1
standard error of mean.
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(b) Chain convergence. Plots of PSRF R̂ statistic on a log scale computed across
10 independent chains initialised from the prior for increasing number
of chain iterations (normalised by mean total run time for each method
to adjust for di�erent per iteration run times) for each of four transition
operators tested. Curves show median value and �lled regions indicate
con�dence interval to upper 95th percentile of computed estimate. A R̂
value of unity is indicative of chains having converged to stationarity,
so for the plotted log(R̂ − 1) values, more negative values indicate chains
approaching convergence.

Figure 3.11.: Gaussian process probit regression results.

to the auxiliary variables in the APM MI+MH chains was 0.24 here sug-
gesting there is probably a limited gain from using elliptical SS updates
to the auxiliary variables in this case as the MI updates are likely to be
mixing the auxiliary variables su�ciently well.

Although PM MH seems to outperform the APM SS+SS method here, other
results suggest the estimated ESS measures of performance should be
treated with some caution, with in general estimated ESSs being suscept-
ible to giving misleading results when chains have poorly converged.
Figure 3.11b shows plots of the potential scale reduction factor (PSRF) con-
vergence diagnostic proposed by Gelman and Rubin in [98], also often
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termed the R̂ statistic. This is a heuristic measure of Markov chain con-
vergence computed from multiple independent chains initialised from
a distribution which should be over-dispersed compared to the (com-
mon) target distribution (we use the prior here). The diagnostic com-
pares the between-chain and within-chain variance of each variable in
the chain state, with a necessary but not su�cient condition for con-
vergence being that these converge to being equal, corresponding to
a R̂ value of one. We used CODA to estimate the R̂ values from the 10
independent chains run for each method as a function of an increasing
number of iterations in the chain sequences used to compute the R̂ es-
timates. We then accounted for the di�erent per iteration run time of
the di�erent methods (in particular the APM SS+SS chains took on av-
erage ∼ 2.5× longer per iteration than the other methods) by plotting
these R̂ values for increasing chain iterations against the estimated run
time to complete that number of iterations, the resulting curves shown
in Figure 3.11b. The darker coloured curves show the median of the es-
timated R̂ interval and the lighter �lled regions of the same colour show
the 50th–95th percentile range of the estimate. To allow the curves to
be more clearly distinguished, the R̂ values are plotted on a shifted log
scale i.e. log(R̂ − 1), with more negative values therefore corresponding
to R̂ values closer to one and so are indicative of the chains being closer
to convergence.

On this measure of performance the PM MH chains seem to perform
more poorly, showing a slower convergence rate than the other meth-
ods, including the APM SS+SS chains. The non-monotonically decreas-
ing behaviour seen in the R̂ curve for the PM MH chains seems to be
the result of the chains su�ering the earlier discussed sticking beha-
viour, with one of the 10 chains found to have stuck for a run of over
2000 iterations and multiple incidents of sticking periods of hundreds
of iterations in all of the chains. An example trace of one of the chains
for the x1 target variable is shown in Figure 3.12a where these stick-
ing periods are clearly visible. The chains run using N = 500 import-
ance samples (traces not shown here) also showed sticking behaviour
though somewhat less frequently, suggesting that while increasing the
number of importance samples can lessen the impact of these events,
it does not seem to necessarily eliminate them. Figure 3.12 also shows
example chain traces for the x1 variable for each of the three other APM

methods; in all cases here there are no visible long sticking periods and
this was also re�ected across the other chains not shown.
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(a) PM MH
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(b) APM MI+MH
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(c) APM SS+MH
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(d) APM SS+SS

Figure 3.12.: Example traces and histograms of target variable x1 = log s from
chains sampled using pseudo-marginal and auxiliary pseudo-
marginal approaches in Gaussian process probit regression model
inference task. In each row a trace of the sampled values for the x1
variable for a single 10 000 iteration Markov chain is shown in the
left plot, while the right plot shows a histogram of the sampled
values from all 10 chains. In the histogram plots the number of
samples in the chain used to produce the plot have been adjusted
to account for the roughly 2.5 times increase in run time for the
APM SS+SS chains compared to the other methods.
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The right column of Figure 3.12 shows histograms for the x1 target vari-
able computed from the samples from all 10 chains for each method
(in the case of the APM SS+SS chains only the �rst 4000 iterations from
each chain were included to account for the roughly 2.5 times slower
run time per chain in this case). Although we do not have a ground
truth for the marginal posterior density here to compare against, it
seems reasonable to assume that the spurious peaks in the histogram
for the PM MH chains are not a re�ection of the true marginal density
but instead a result of the long sticking artefacts in the chains causing
the states that the chain remains stuck at to be overly represented in
the histograms. The APM methods produced much smoother marginal
density estimates, with the APM SS+SS chains seeming to give a partic-
ularly smooth result here even with the run time adjustment meaning
this histogram is computed from less than half the number of samples
as used in the other methods. Although by no means conclusive, this
provides a further suggestion that the relatively poor standing of the
APM SS+SS chains on the ESS measure of performance is not an entirely
accurate portrayal of the overall performance of the method.

3.7 discussion

The auxiliary pseudo-marginal methods discussed in this Chapter are
a relatively simple extension to the existing pseudo-marginal MCMC

framework which nonetheless o�er some important bene�ts.

The simplest proposed approach of splitting the combined proposed
update to both auxiliary and target variables in the standard PM MH

algorithm into a separate Metropolis independence update to the aux-
iliary variables and Metropolis–Hastings update to the target variables
(APM MI+MH) involves changing only a few lines of code in most im-
plementations and adds no further free parameters to tune. Despite in-
volving only a minor change, in the empirical studies performed this
adjusted update was found to give signi�cantly better computational
cost normalised sampling e�ciency over the standard pseudo-marginal
Metropolis–Hastings update, despite in some cases doubling the com-
putational e�ort per overall chain update. A simple intuition for under-
standing this improved performance is that for a �xed proposal distribu-
tion for the target variables, the accept rate of the MH update to the tar-
get variables in the APM MI+MH chains was typically more than double
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the corresponding accept rate for the overall PM MH update. Therefore
the doubling of the number of density estimates needed per iteration
was more than outweighed by more than double the number of pro-
posed target variable updates from the same proposal distribution (e.g.
same Gaussian random-walk step-size) being accepted

The size of the increase in the accept rates for a �xed proposal distri-
bution is dependent on how high the variance of the density estimator
is or equivalently how dependent the target and auxiliary variables are
under the auxiliary joint target. For high variances cases e.g. when us-
ing N = 1 importance sample, the increase in accept rates for the target
variable updates in APM MI+MH chains over the accept rate of the PM

MH updates is higher due to the poor performance of making independ-
ent proposed updates to the auxiliary variables in the PM MH having
a strong deleterious e�ect on the PM MH accept rate. For example in
the Gaussian latent variable model experiments when using N = 1 im-
portance sample the accept rate of the MH updates in the APM MI+MH

chains was typically around a factor of 20 higher than the accept rate
for the corresponding PM MH chains using the same proposal step size.
As the variance of the density estimator is decreased by increasing N ,
the di�erence in the accept rates for a �xed proposal step size becomes
less marked with around a factor �ve di�erence for N = 8 and around
a factor two di�erence for N = 2 between APM MI+MH and PM MH. So
with a lower variance estimator the di�erence in performance between
APM MI+MH and PM MH becomes less marked.

However the recommendation of [238] suggests that when the compu-
tational cost of each PM MH update scales linearly with N (and when us-
ing a density estimator formed as an average of unbiased Monte Carlo
estimates) that using N = 1 is close to optimal for PM MH despite the
higher estimator variance. As the low N , high density estimator vari-
ance cases are precisely when we expect to see the largest potential
gains from using APM MI+MH over PM MH this suggests when this lin-
ear cost scaling argument is valid there will often be a computational
gain from using APM MI+MH. In some cases as we saw in the Gaussian
process experiments we can form a much lower variance density estim-
ate by expending some computational e�ort to �t a good importance
distribution. In these cases due to the additional overhead of the �tting
procedure the linear cost scaling argument no longer applies. Further
the density estimates in this case may be su�ciently low variance for
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there to be little improvement in accept rates of updates to the target
variables by splitting the PM MH in to separate MI and MH updates. How-
ever typically in these cases the overhead introduced by separately up-
dating the auxiliary variables in an MI step will also be much less than
the cost of the original PM MH update, as for �xed values of the target
variables the importance distribution does not need to be re�tted and
any target variable dependent computations such as Cholesky factor-
isations of covariance matrices can be cached and reused. Therefore the
overall cost per APM MI+MH update will be very close to that of each PM

MH update and so even a small improvement in accept rate of the target
variable updates can make it worthwhile to split the update.

Perhaps more important than the sampling e�ciency gains seen from
using APM MI+MH over PM MH in the experiments here was the signi-
�cantly improved ability to tune the MH updates in the algorithm even
when using a high-variance density estimator. By decoupling the de-
pendency of the MH accept rate from the density estimator variance,
theoretical guidelines for choosing a proposal step-size based on the av-
erage accept rate can be straightforwardly applied to tune APM MI+MH

updates. The resulting increased ease of use of the algorithm and de-
creased requirement for user intervention to get good performance
might often make APM MI+MH an attractive choice even when the extra
run time overhead per update negates any sampling e�ciency gains.
Further the separate MI step accept rate of the APM MI+MH update pro-
vides a diagnostic already computed as part of the chain updates which
can alert users to issues with poor mixing of the auxiliary variables due
to low accept rates of the auxiliary updates. In contrast it will not al-
ways be clear if a poor accept rate of a PM MH chain is due to poor
choice of the target variables proposal distribution or due to a high
density estimator variance, and separately monitoring the density es-
timator variance as part of the update adds overhead while not being
as directly interpretable as the MI step accept rate.

If initial runs using an APM MI+MH method do show a very low accept
rate for the updates to the auxiliary variables which might lead to con-
vergence issues, the proposed APM SS+MH approaches o�er a simple
‘plug-in’ solution to improve mixing of the auxiliary variables without
having to tune a separate proposal distribution for a MH update to the
auxiliary variables. If the auxiliary variables can be naturally represen-
ted as being marginally distributed according to the standard normal
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distribution, then elliptical slice sampling is a straightforward choice,
having no free parameters to tune and still initially proposing bold
moves to near independent points in the auxiliary space while able to
back-o� to more conservative updates to ensure a non-zero move to
the auxiliary variables under weak smoothness conditions.

Another common case is auxiliary variables which are naturally para-
meterised as a vector of standard uniform draws, in which case re�ect-
ive linear slice sampling o�ers analogous bene�ts. Although the linear
slice sampling algorithm does have a free initial bracket width para-
meter to be chosen, in general (as seen in the experiments using this
algorithm for updates to the target variables in the Gaussian latent vari-
able model) the e�ciency of the algorithm is not strongly dependent on
the choice of this parameter providing it is set large enough to cover
most of the intersection of the slice with the sampled line as the ex-
ponential shrinking of the bracket on proposing an o� slice point will
quickly reduce the bracket to a more appropriate size if set initially too
large. For re�ective slice sampling in the unit hypercube a �xed initial
bracket width of one and a direction vector v sampled fromN (0, I) was
found to work well in experiments applying APM SS+MH methods to in-
ference in a doubly-intractable Ising model problem in [185].

Independently of and concurrently with the original conference public-
ation [185] related to this work, both Dahlin et al. [68] and Deligiannidis
et al. [73] considered related frameworks in which the auxiliary random
variables of a pseudo-marginal density estimator are updated using a
Metropolis–Hastings method which leaves the distribution de�ned by
the density (3.8) on the joint auxiliary–target variable space invariant.
Both assume a parameterisation in which the auxiliary variables have
an isotropic standard normal marginal distribution ρ (u) = N (u | 0, I),
and consider a Metropolis–Hastings update to the auxiliary variables
with proposal density

r ∗ (u ′ |u) = N
(
u ′ |
√
1 − λ2u, λ2I

)
(3.20)

which can be considered as a discretisation of a Ornstein-Uhlenbeck
di�usion process or as a �xed step size update on an elliptical path that
the elliptical slice sampling algorithm 5 generalises by adaptively set-
ting the step size λ. This �xed step-size Metropolis–Hastings update is
more amenable to analysis, with both [68] and [73] giving much more
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extensive theoretical justi�cations for using perturbative updates to the
auxiliary variables (or equivalently introducing correlations in between
the auxiliary variable samples) than the mainly intuition based and em-
pirical arguments made here. These theoretical insights are important
for informing future development of these ideas. In practical settings
however, though the above MH update with an optimally tuned choice
of λ may give better sampling e�ciency performance compared to the
elliptical slice sampling updates proposed here, we would suggest that
the additional tuning burden placed on the user and loss of robustness
in cases where the appropriate step size varies across the state space,
would suggest that elliptical slice sampling updates to the auxiliary
variables are still often a good default choice.

The empirical evidence for using slice sampling updates to the target
variables as in the proposed APM MI+SS and APM SS+SS methods is less
strong, with in both of the models considered in the experiments here
these methods having poorer run-time adjusted e�ciency than the APM

MI+MH and APM SS+MH methods respectively. If adapting an existing PM

MH algorithm where some e�ort has already been extended to identify
an appropriate proposal distribution for updates to the target variables
or other information is available to inform this choice, the additional
overhead of the slice sampling updates might not be worthwhile. In
cases however where we have less prior knowledge about appropriate
scales for updates to the target variables or are more concerned with
overall robustness and ease of use, slice sampling updates to the target
variables are likely to be more attractive.

Subsequent to the publication of the conference paper related to this
work, Lindsten and Doucet proposed the use of HMC within an (aux-
iliary) pseudo-marginal framework [159]. Under the assumption that
the joint auxiliary target density (3.8) is de�ned with respect to the
Lebesgue measure and is di�erentiable, their pseudo-marginal Hamilto-

nianMonte Carlo algorithm proposes jointly updating the auxiliary and
target variables using a HMC transition operator. In particular they as-
sume the marginal distribution on the auxiliary variables R is stand-
ard normal N (0, I) and leverage this to propose an alternative sym-
plectic integrator to the typical leapfrog scheme which improves the
scaling of the method the dimensionality of the auxiliary variable space
is high.
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In numerical experiments with a hierarchical model of a di�raction pro-
cess with a three target variables to infer, it was found that the proposed
pseudo-marginal HMC algorithm gave similar performance to using a
APM SS+MH update when normalised by the computational cost per up-
date. In a second experiment with a generalised linear mixed model
with a 13 dimensional target space, the proposed pseudo-marginal HMC

algorithm was compared to a APM SS+MH update in which the update
to the target variables is formed of a sequential scan of per-dimension
random-walk Metropolis updates to each individual target variable. It
is reported that attempts to jointly update all target variables in the
MH step led to very poor acceptance rates. The traces for the pseudo-
marginal HMC chain (Figure 4 in [159]) in this case indicate improved
mixing compared to the APM SS+MH update, though as the run-time per
sample of the pseudo-marginal HMC method is reported to be approx-
imately 3.5 times higher in the implementation used and the traces do
not appear to be run-time adjusted it is not clear what a cost norm-
alised comparison would show. Autocorrelation plots for chains from
the two approaches are also shown (Figure 13 in [159]), with the pseudo-
marginal HMC method showing quicker decay of the autocorrelations
per sample lag compared to APM SS+MH though again it is not clear if the
autocorrelation plots are run-time adjusted. Both the pseudo-marginal
HMC and APM SS+MH chains appear to mix signi�cantly better than
Particle Gibbs [8], an auxiliary variable approach based on a particle
�lter density estimator.

The use of HMC updates with an auxiliary pseudo-marginal framework
seems an appealing idea when the required gradients are available due
to the improved performance in complex high-dimensional target dis-
tributions often o�ered by HMC methods, and the integrator proposed
by [159] is an elegant approach for exploiting structure in the auxiliary
target distribution to give improved performance when the number of
auxiliary variable dimensions is large. Though in the experiments in
[159] it is not clear how signi�cant the gain in performance is over using
random-walk Metropolis updates to the target variables in a APM SS+MH

method, it seems plausible that in models with higher-dimensional tar-
get space that HMC updates would start to increasingly outperform
random-walk Metropolis updates to the target variables. In the next
chapter we will discuss related methods which apply HMC updates to
perform inference in simulator models; this work was performed con-
currently and independently to [159].
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4 I M P L I C I T G E N E R AT I V E M O D E L S

In the approximate inference methods considered in Chapter 2 a uni-
fying element was the requirement to be able to evaluate an explicit
probability density function for the target distribution of interest. In
the previous chapter we considered the pseudo-marginal framework
which allowed relaxing this requirement to being able to evaluate an
unbiased (and non-negative) estimator for the target density. In this
chapter we will consider probabilistic models speci�ed by a generat-
ive process in which the density of the model variables is de�ned only
implicitly [19, 77, 113] - that is we can generate sample values for the
variables in the model, but we cannot tractably evaluate the probabil-
ity distribution of those variables or more speci�cally its density with
respect to an appropriate base measure.

Although models without an explicit density function are challenging
to work with from an inferential perspective, they are ubiquitous in
science and engineering in the form of probabilistic models de�ned
by the computational simulation of a physical system. Typically simu-
lator models are speci�ed procedurally in code with any stochasticity
introduced by drawing values from a pseudo-random number gener-
ator. The complexity of the function mapping from random inputs to
simulated outputs typically makes calculating an explicit density on the
outputs at best non-trivial and often intractable (as seen for a simple
example in Figure 1.6 in Chapter 1).

There has also been a long history in statistics of using distributions
de�ned by their quantile function [126, 254] from which we can easily
generate independent samples using the inverse transform sampling
method discussed in Chapter 2. Although these quantile distributions

are often able to o�er very �exible descriptions of shape of a distribu-
tion [104] often the quantile functions will not have an analytic inverse
meaning their CDF and so density function cannot be evaluated analyt-
ically. Generative models in which the density of the model variables is
only de�ned implicitly have also been the subject of substantial recent
interest in the machine learning community due to the development
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of e�ective training approaches which do not require evaluation of a
density on the model variables [82, 110, 157], with there being signi�c-
ant gains in modelling �exibility by dropping the requirement to be
able to compute an explicit density function [177, 252].

The focus of this chapter will therefore be methods for performing ap-
proximate inference in generative models where we do not necessarily
have access to an explicit density on the model variables. A lack of
an explicit density function makes it non-trivial to directly apply the
approximate inference approaches that have been discussed so far in
this thesis. This has spurred the development of inference approaches
speci�cally targeted at implicit generative models such as indirect in-
ference [113] and approximate Bayesian computation (ABC) [19].

In both indirect inference and ABC, inferences about plausible values
of the unobserved variables are made by computing distances between
simulated observed variables and observed data. At a qualitative level,
values of the unobserved variables associated with simulated observa-
tions that are ‘near’ to the data are viewed to be more plausible. This
approximation that the simulated observations are only close but not
equal to the observed data makes the inference problem more tractable,
but also biases the inference output. Further simple distance measures
tend to become increasingly less informative as the dimensionality of a
space increases, making it challenging to use these approaches to per-
form inference in models with large numbers of unobserved variables.
This motivates the use of dimensionality reduction techniques to pro-
ject the observations to a set of lower-dimensional summary statistics.
Although through careful choice of summaries this approach can yield
good results, identifying informative summaries is challenging and ex-
cept for rare cases where su�cient statistics are available any reduction
to summary statistics will entail a loss of information about the unob-
served variables compared to conditioning on all observations.

We make two main contributions in this chapter. First we show that
by reparameterising the approximate conditional expectations estim-
ated in ABC approaches to inference in generative models it is possible
to express them in the form of an expectation of a function of a ran-
dom vector variable distributed according to a density which we can
evaluate up to a normalising constant. This makes it possible to apply
e�cient general purpose approximate inference methods such as slice
sampling and Hamiltonian Monte Carlo to implicit generative models
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without the need to develop dedicated ABC variants. It is sometimes
feasible to apply these methods when conditioning on all observations
without the need to reduce dimensionality using summary statistics.
The reparameterisation used is closely related to that applied to pseudo-
marginal density estimators in the previous chapter, with existing ABC

MCMC methods being a common special case of the pseudo-marginal
Metropolis–Hastings update discussed there.

Secondly for a restricted class of generative models we term di�erenti-
able generative models and which we de�ne in a following section, we
show that it is possible to express exact conditional expectations un-
der the model as integrals against a density we can evaluate pointwise
across an implicitly de�ned manifold. We use this to propose a novel
constrained HMC method for performing inference in di�erentiable gen-
erative models. Unlike ABC approaches, this method allows inference
to be performed by conditioning the observed variables in the model to
be within arbitrary small distances of the data values while remaining
computationally tractable.

The contributions described in this chapter have previously appeared
in the published conference paper

• Asymptotically exact inference in di�erentiable generative models.
Matthew M. Graham and Amos J. Storkey. Proceedings of the 20th
International Conference on Arti�cial Intelligence and Statistics,

PMLR 54:499-508, 2017.

I was the primary author of that work and proposed the novel contribu-
tions made in the paper. I also performed and analysed the numerical
experiments described in the paper, some of which are reproduced in
this chapter in Section 4.10. This chapter expands upon the analysis and
discussion in the above publication and includes additional numerical
experiments.

4.1 differentiable generator networks

We �rst review two approaches to specifying generative models using
di�erentiable networks1, generative-adversarial networks (GANs) [110]
and variational autoencoders (VAEs) [139, 224]. Although the methods

1 A a di�erentiable parametric function formed by interleaving ‘layers’ of a�ne trans-
formations and elementwise non-linearities, also termed a neural network.
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Figure 4.1.: Example factor graphs for the generator of a GAN and decoder of a
VAE. (a) The generator for a GAN with a standard normal distribution
on the hidden code h, this mapped through a di�erentiable network
gθ , to generate the simulated output vector y. (b) The decoder of
a Gaussian VAE. Again a hidden code vector h with a standard
normal distribution is used, di�erentiable network functions mθ

and sθ then mapping from this code vector to mean and diagonal
covariance parameters of a multivariate normal distribution on the
output vector y. (c) The same VAE decoder model as (b), with in
this case the conditional factor on the outputs y given hidden code
h reparameterised in terms of a deterministic transformation of a
standard normal vector n.

used for training these models di�er signi�cantly, their generative com-
ponent have the same form of a function, speci�ed by a di�erentiable
network, which takes as input a vector of random variables from a
known distribution and outputs a generated sample from an implicitly
de�ned distribution. The overarching term di�erentiable generator net-

works has been suggested for generative models with this form [109].
We will use a VAE model in one of the later experiments in this chapter
so this material is partly to provide the necessary background for our
description of the models used in that experiment, however more broad-
ly the structure of the generative models described here was a key in-
spiration for the ideas described in this chapter.

GANs [110] have become a popular approach in unsupervised machine
learning for training models which can generate plausible simulated
data points, typically images, given a large collection of data to learn
from. The training procedure for GANs is posed as a minimax game
between a generator function, a di�erentiable network gθ which re-
ceives as input a vector of values h drawn from a simple known dis-
tribution such as the standard normal and outputs a simulated data
point y = gθ (h), and an adversarial discriminator function dϕ , which
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predicts whether a presented vector input is a simulated or real data
point drawn from the training data. Training proceeds by updating the
generator parameters θ to maximise the expected discriminator uncer-
tainty, while the discriminator parameters ϕ are updated to minimise
the expected discriminator uncertainty.

Although there are many variants of this basic outline of the training
procedure, for our purposes the main relevant factor is that most GAN

models retain the same basic structure for the generator, which is visu-
alised as a factor graph in Figure 4.1a. While ph is known, as y is a de-
terministic transformation of h there is not a well-de�ned joint density
on h and y. If gθ were bijective we could apply the change of variables
formula (1.22) to calculate the density py in terms of ph and the Jac-
obian Jgθ however this will not usually be the case - typically in fact
the dimensions of y and h will di�er.

An alternative generative modelling approach using di�erentiable net-
works is the Gaussian VAE [139] or deep latent Gaussian model [224]. In
a Gaussian VAE di�erentiable networks mθ and sθ are used to gener-
ate respectively the mean and per-dimension standard deviations, cor-
responding to a diagonal covariance matrix, of a conditional normal
distribution on the outputs given a hidden code vector h drawn from
a known distribution. The simulated output y can then be generated
by sampling from the conditional distribution N

(
mθ (h), diag sθ (h)2

)

given a sampled code vectorh. Unlike a GAN, in a Gaussian VAE the joint
density on y and h is tractable to evaluate, for the case of a normally
distributed code vector h corresponding to

py,h (y,h) = N
(
y |mθ (h), diag sθ (h)2

)
N (h | 0, I). (4.1)

Although typically we cannot marginalise out the hidden code vector
h to get the marginal density on the generated outputs y, having ac-
cess to the joint density allows the use of standard approximate in-
ference methods when training the model. In particular as suggested
by their name variational autoencoders are trained using a parametric
variational inference approach which uses a second encoder di�erenti-
able network to encode the parameters of a variational approximation
to the posterior density ph |y given a data point y, with a lower bound
on the log joint density of the data points then maximised with respect
to the encoder and decoder network parameters. Once a VAE model is
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trained, the joint density (4.1) also allows direct application of approx-
imate inference methods such as MCMC to infer plausible values for a
subset y1 of the decoder generated outputs y given observations of the
remaining values y2 by jointly inferring y1 and h given y2.

By reparameterising the normal conditional factor py |h in (4.1) as a de-
terministic transformation y = mθ (h) + sθ (h) � n where n is a vector
of standard normal variables we can express the generative process spe-
ci�ed by the decoder of a VAE similarly to that of a GAN by considering
the generator to be gθ (h,n) = mθ (h) + sθ (h) � n with both h and n
as inputs. These two parameterisations of a VAE decoder are shown as
factor graphs in Figures 4.1b and 4.1c.

This de�nition of the ‘generator’ corresponding to a VAE decoder is
helpful when using it as a building block in a larger generative model
where it is composed with other functions. When composing together
several generator modules like this, even if we are able to evaluate a
density on the variables in an individual module it may not be possible
to evaluate a density on the variables of interest in the overall model.
However by de�ning each module in the standard form of a di�eren-
tiable function from input variables to generated outputs, the overall
model retains the same form allowing us to build up more complex
models and still be able to apply the same inference methods.

4.2 generative models as transformations

In the preceding section we saw that the generative process of both
GAN and VAE models can be described as a transformation of a vector of
random variables drawn from a known distribution. This formulation
of a generative model in fact extends beyond these machine learning
examples. Any probabilistic model that we can programmatically gen-
erate values from in a �nite time can be expressed in the form of a de-
terministic function which takes as input a vector of random variables
sampled from a known distribution. This observation just corresponds
to stating that we can track all of the calls to a random number gener-
ator in a program, and that given the values sampled from the random
number generator all of the operations then performed by the program
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are deterministic2. The key idea we will exploit in this chapter is that we
can perform inference in generative models by considering the distri-
bution induced on the random inputs to the model when conditioning
on partial observations of the generated output.

To formalise this idea we �rst introduce some notation. Let (S, E,P)
be a probability space, and (X ,G), (Z ,H ) be two measurable spaces.
We denote the vector of observed random variables in the model of
interest as x : S → X and the vector of unobserved random variables
that we wish to infer z : S → Z . Our objective is to be able to compute
conditional expectations E[f (z) | x ] : X → F of arbitrary measurable
functions f : Z → F of the unobserved variables given known values
for the observed variables x. We now give a concrete de�nition for what
we will consider as constituting a generative model for x and z.

definition 4.1 (Generative model): Let (U ,F ) be a measurable space

and u : S → U a random vector taking on values in this space. We

require that Pu has a density ρ that we can evaluate with respect to a base

measure µ and that we can generate independent samples from Pu. Then

if gx : U → X and gz : U → Z are measurable functions such that

x(s ) = gx ◦ u(s ) and z(s ) = gz ◦ u(s ) ∀s ∈ S (4.2)

we de�ne (U ,F, ρ, µ, gx, gz) as a generative model for x and z. We call

(U ,F ) the input space of the generative model, (X ,G) the observed
output space and (Z ,G) the unobserved output space. Further we will
refer to gx as the generator of x and likewise gz the generator of z. The
random vector u is the random inputs and the density ρ the input density.

Intuitively the input vector u represents all of the values drawn from
a random number generator in the code of a generative model and the
generator functions gx and gz represent the operations used to gener-
ate values for x and z respectively given values for the random inputs
u. In some cases the number of random inputs used in a generator eval-
uation will depend on the values of the random inputs themselves, for
example if there is a branching statement which depends on a random
input and the operations in each branch use di�erent random inputs.
Although implementationally more challenging, we can still consider

2 For the purposes of clarity of exposition here we consider the outputs of a pseudo-
random number generator as truly random, even though in reality as we saw in Chapter
2 they are deterministically computed.
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this case within the above framework by enumerating the random in-
puts required in all possible control �ow paths through the generator
code and mapping each to a di�erent element in u. In interpreted lan-
guages, this can be done lazily by detecting if a call to a random number
generator object has occurred at the same point in a execution trace
previously and if so matching to same element in u as used previously
otherwise matching to a new u element.

In this chapter we will mainly concentrate on a restricted class of gen-
erative models which we term di�erentiable generative models.

definition 4.2 (Di�erentiable generative model): Let (U ,F, ρ, µ, gx, gz)
be a generative model for x and z as speci�ed in De�nition 4.1. Then if the

following conditions are satis�ed

1. U ⊆ RM
, F = B(U ) and X ⊆ RNx

, G = B(X ),

2. Pu has density ρ with respect to µ = λM ,

3. the input density gradient∇ρ (u) = ∂ρ
∂u exists Pu-almost everywhere,

4. the generator Jacobian Jgx(u) =
∂gx
∂u exists Pu-almost everywhere.

we describe (U ,F, ρ, µ, gx, gz) as a di�erentiable generative model.

These requirements are quite severe: for example they exclude any
models with discrete random inputs and those in which branch state-
ments in the generator code introduce discontinuities. However there
are still a large class of interesting generative models which do meet
these conditions: for example models based on approximate integration
of partial or ordinary di�erential equations combined with a stochastic
observation model or SDE models without a jump-process component.
As di�erentiability with respect to model parameters is a requirement
for training models such as GANs and VAEs using stochastic gradient des-
cent, the corresponding generators will also usually be di�erentiable
with respect to the random inputs and so fall in to this class.

A further restriction we will require in some cases is that the Jacobian
Jgx is full row-rank Pu-almost everywhere, which requires thatM ≥ Nx

i.e the number of random inputs is at least as many as the number of
observed variables that will be conditioned on. In cases where this does
not hold the implicitly de�ned probability distribution Px will not be
absolutely continuous with respect to the Lebesgue measure. Instead Px

will only have support on a sub-manifold of dimension locally equal
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to the rank of Jgx and conditioning on arbitrary x ∈ X is not a well-
de�ned operation. The GAN generator models trained in practice often
do not meet this condition as it is typical to use a lower dimensional
hidden input than the generated output dimension [10]. There is no
fundamental requirement in adversarial training to use generators of
this form however and theoretical results [10] suggest that the lack of
absolute continuity of the implicit distribution on the generator outputs
with respect to λNx may contribute to the often unstable behaviour of
GAN training.

Although we only required the existence of the input density gradient
∇ρ and generator Jacobian Jgx in De�nition 4.2, unsurprisingly this is
motivated by the need to evaluate these terms in the proposed inference
methods for di�erentiable generative models. Although this may seem
a limiting requirement for complex models, the availability of e�cient
general-purpose automatic di�erentiation (AD) libraries [17] means it is
possible to automatically calculate the necessary derivatives given just
the code de�ning the forward functions ρ and gx. For generative mod-
els implemented in existing code this will often require re-coding us-
ing an appropriate AD framework. In some cases however it is possible
to use AD tools which automatically transform existing source code —
for example given C or Fortran code for a function Tapenade [125] can
generate code for computing the function’s derivatives. By applying
the reverse-mode accumulation AD (Algorithm 16 in Appendix B) the
gradient ∇ρ can be evaluated at a O (1) cost relative to evaluating the
density itself and the Jacobian Jgx can be evaluated at a O (Nx) factor
of the cost of a single evaluation of the generator gx.

For a given joint distribution Px,z there is not a single unique corres-
ponding generative model (U ,F, ρ, µ, gx, gz) for x and z. As a simple
example if (U ,F, ρ, µ, gx, gz) is a di�erentiable generative model and f :
V → U is a di�eomorphism, then we can reparameterise the random
inputs as v = f−1 (u), and de�ne an input density ρ̃ (v) = |Jf(v) | ρ (f (v))
using the change of variables formula for a di�eomorphism (1.22), with
(V ,B(V ), ρ̃, µ, gx ◦ f , gz ◦ f ) then also a generative model for x and z. In
Appendix D we discuss some of the issues involved in choosing a para-
meterisation of a generative model. We will typically parameterise a
model such that Pu has unbounded support and each of the dimensions
of u has unit variance, as these properties simplify the implementation
of the MCMC methods we propose later in the chapter.
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Figure 4.2.: Factor graphs of undirected and directed generative models. Panel
(a) shows the more general undirected model case in which ob-
served variables x and latent variables z are jointly generated from
random inputs u, with (b) showing equivalent factor graph after
marginalising out the random inputs. Panel (c) shows the directed
model case in which we �rst generate the latent variables z from a
subset of the random inputs u1 then generate the observed variables
x from z and the remaining random inputs u2, with (d) showing
resulting natural directed factorisation of joint distribution when
marginalising out u1 and u2.

4.3 directed and undirected models

So far we have considered generative models where both the observed
and unobserved variables are jointly generated from u without assum-
ing any particular relationship between z and x. This structure is shown
as a factor graph in Figure 4.2a and a corresponding factor graph for
just x and z with u marginalised out shown in Figure 4.2b.

A common special case is when the input space U = U1 ×U2 and the un-
observed variables z are generated from a subset of the random inputs
u1 : S → U1 (e.g. corresponding to sampling from a prior distribution
over the parameters of a simulator model), with the observed variables
x then generated from a function gx |z : Z × U2 → X which takes as in-
put both the generated unobserved variables z and the remaining ran-
dom variables u2 : S → U2, i.e. x = gx |z (z,u2) = gx |z (gz (u1), u2). This
is illustrated as a factor graph in Figure 4.2c. Again a corresponding
factor graph with u marginalised out is shown in Figure 4.2d, with in
this case the structure of the generator making a directed factorisation
in terms pz and px |z natural.

We will therefore term models with this structure as directed generative
models (with the more general case termed undirected for symmetry).
The method we propose are equally applicable to undirected and direc-
ted generative models, though often the extra structure present in the
directed case can allow computational gains. Most ABC inference meth-
ods concentrate on directed generative models. Typically the marginal
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density pz will be tractable to explicitly compute in such cases, such
that it is only the conditional density px |z which we cannot evaluate.
As this conditional density is often referred to as the likelihood, an al-
ternative designation of likelihood-free inference is sometimes used for
ABC and related methods.

4.4 approximate bayesian computation

We will now review the ABC approach to inference in generative mod-
els. We will assume here that the observed variables in the generative
model of interest are real-valued, i.e. that X ⊆ RNx , with inference in
generative models with discrete observations being in general simpler
from a theoretical perspective (though not necessarily computation-
ally). The auxiliary-variable description we give of ABC is non-standard,
but is consistent with the algorithms used in practice and will help il-
lustrate the relation of our approach to existing ABC methods.

We introduce an auxiliaryX -valued random vector ywhich depends on
the observed random vector x via a regular conditional distribution Py |x
we term the kernel which has a conditional density kϵ : X ×X → [0,∞)

with respect to the Lebesgue measure,

Py |x (A | x ) =
∫

A

kϵ (y | x ) dy ∀A ∈ B(X ), x ∈ X . (4.3)

The kernel density kϵ is parameterised by a tolerance ϵ and chosen such
that the following conditions holds for arbitrary Lebesgue measurable
functions f : X → R

lim
ϵ→0

∫

X

f (y) kϵ (y | x ) dy = f (x ) (4.4)

and lim
ϵ→0

∫

X

f (x ) kϵ (y | x ) dx = f (y). (4.5)

Intuitively these requirements correspond to kernels which collapse to
a Dirac delta in the limit of ϵ → 0. For kernels meeting these condition
(4.4) we have that ∀A ∈ B(X )

lim
ϵ→0

Py (A) = lim
ϵ→0

∫

X

Py |x (A | x ) Px (dx )

= lim
ϵ→0

∫

X

∫

X

1A (y) kϵ (y | x ) dy Px (dx )

=

∫

X

1A (x ) Px (dx ) = Px (A),

(4.6)
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i.e. that in the limit ϵ → 0, y has the same distribution as x. Intuitively,
as we decrease the tolerance ϵ we increasingly tightly constrain y and
x to have similar distributions. Two common choices of kernels satis-
fying (4.4) and (4.5) are the uniform ball and Gaussian kernels which
respectively have densities

kϵ (y | x ) =
Γ( Nx

2 + 1)

π
Nx
2 ϵNx

1[0,ϵ ] (‖y − x ‖2) (uniform ball), (4.7)

and kϵ (y | x ) = N
(
y | x , ϵ2I

)
(Gaussian). (4.8)

The marginal distribution of y can be written ∀A ∈ B(X ) as

Py (A) =

∫

X

Py |x (A | x ) Px (dx ) =
∫

A

∫

X

kϵ (y | x ) Px (dx ) dy. (4.9)

Therefore Py has a density with respect to the Lebesgue measure

py (y) =

∫

X

kϵ (y | x ) Px (dx ) =
∫

X×Z
kϵ (y | x ) Px,z (dx , dz). (4.10)

The density py exists irrespective of whether Px has a density with
respect to the Lebesgue measure (it may not for example if Px only has
support on a sub-manifold of X ). Using this de�nition of the density py
we have that for any measurable function f : Z → F of the unobserved
variables and ∀A ∈ B(X ) that
∫

A×Z
f (z) Py,z (dy, dz) =

∫

A×X×Z
f (z) Py,x,z (dy, dx , dz)

=

∫

X×Z

∫

A

f (z) kϵ (y | x ) dy Px,z (dx , dz)

=

∫

A

∫

X×Z
f (z) kϵ (y | x ) Px,z (dx , dz) dy.

(4.11)

Using that Py has a density py with respect to the Lebesgue measure,
and that we can safely ignore the set for which py (y) = 0 when integ-
rating against Py as it is zero-measure, we have that ∀A ∈ B(X )

∫

A×Z
f (z) Py,z (dy, dz) =
∫

A

1
py (y)

∫

X×Z
f (z) kϵ (y | x ) Px,z (dx , dz) Py (dy).

(4.12)
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Comparing this to the de�nition of the conditional expectation from
Chapter 1 (1.30) therefore we have ∀y ∈ X : py (y) > 0

E[f (z) | y = y; ϵ ] = 1
py (y)

∫

X×Z
f (z) kϵ (y | x ) Px,z (dx , dz)

=

∫
X×Z f (z) kϵ (y | x ) Px,z (dx , dz)∫

X×Z kϵ (y | x ) Px,z (dx , dz)
.

(4.13)

For the case of a model in which Pz has a density pz with respect to the
Lebesgue measure, then if we use f = 1A for A ∈ B(Z ) in (4.13) and the
de�nition of a regular conditional distribution in (1.32) we have

Pz |y (A |y) =
∫

A

∫
X
kϵ (y | x ) Px |z (dx | z) pz (z)

py (y)
dz. (4.14)

In this case the regular conditional distribution Pz |y has a conditional
density pz |y with respect to the Lebesgue measure,

pz |y (z |y) = 1
py (y)

∫

X

kϵ (y | x ) Px |z (dx | z) pz (z). (4.15)

In reference to terminology of Bayesian inference, the density pz |y is
termed the ABC posterior density, and therefore conditional expecta-
tions of the form of (4.13) which correspond to an integral with respect
to this ABC posterior, are termed ABC posterior expectations.

We now consider how E[f (z) | y = y; ϵ ] is related to the conditional ex-
pectation we are interested in evaluating E[f (z) | x = y]. If we assume
that Px,z is absolutely continuous with respect to the Lebesgue measure
with density px,z, using (4.5) we have that ∀y ∈ X : px (y) > 0

lim
ϵ→0

E[f (z) | y = y; ϵ ] = lim
ϵ→0

∫
Z
f (z)

∫
X
kϵ (y | x ) px,z (x ,z) dx dz∫

Z

∫
X
kϵ (y | x ) px,z (x ,z) dx dz

=

∫
Z
f (z) px,z (y,z) dz∫
Z

px,z (y,z) dz
= E[f (z) | x = y].

We therefore have that ABC posterior expectations E[f (z) | y = y; ϵ ]
converge as ϵ → 0 to the exact posterior expectations we wish to be
able to estimate E[f (z) | x = y]. Note this result requires that Px,z is
absolutely continuous with respect to the Lebesgue measure.
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Crucially from a computational perspective the numerator and denom-
inator of (4.13) both are expectations of known functions of x and z,

E[f (z) | y = y; ϵ ] = E[f (z) kϵ (y | x)]
E[kϵ (y | x)]

. (4.16)

Generating Monte Carlo estimates of these expectations only requires
us to be able to generate samples from Px,z without any requirement
to be able to evaluate densities and therefore can be achieved in the
implicit generative models of interest.

We can therefore estimate E[f (z) | y = y; ϵ ] by generating a set of in-
dependent pairs of random vectors {xs , zs}Ss=1 from Px,z

3 and comput-
ing Monte Carlo estimates of the numerator and denominator in (4.16),
which gives the following estimator

f̂S ,ϵ =
∑S

s=1 ( f (zs ) kϵ (y | xs ))∑S
s=1 (kϵ (y | xs ))

. (4.17)

This directly corresponds to an importance sampling estimator for ex-
pectations with respect to Px,z |y using Px,z as the proposal distribution.
Therefore if both f (z) kϵ (y | x) and kϵ (y | x) have �nite variance, then
the estimator f̂S ,ϵ will be consistent,

lim
S→∞

E
[
f̂S ,ϵ

]
= E[f (z) | y = y; ϵ ]. (4.18)

If the kernel used is the uniform ball kernel (4.7), the estimator can be
manipulated in to a particularly intuitive form

f̂S ,ϵ =
1
|A|

∑

s ∈A
( f (zs )) with A =

{
s ∈ {1 . . . S} : ‖y − xs ‖2 < ϵ} (4.19)

which corresponds to averaging the values of sampled unobserved vari-
ables zs where the corresponding samples of model observed variables
xs are within a distance ϵ of the observed data y. The is the standard
ABC rejection algorithm [92, 215, 232, 246, 259] , with A corresponding
to the indices of the set of accepted samples, with the other samples
being ‘rejected’ as the simulated observations xs are more than a dis-
tance ϵ from the observed datay. As an instance of a rejection sampler,
conditioned on the acceptance set containing at least one sample, i.e.
|A| > 0, (4.19) is an unbiased estimator for E[f (z) | y = y; ϵ ].

3 As ABC is usually applied to directed models this is considered as generating z from a
prior then simulating x given z however more generally we can sample from the joint.
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Compared to the general rejection sampling scheme described in Al-
gorithm 1 there is no probabilistic accept step. However the ratio of
the target distribution Px,z |y to the proposal distribution Px,z here is
always equal to exactly zero or a constant c (ϵ ) corresponding to the
ratio of the volume of the ϵ radius ball, thus if we choose the bounding
constant M in the rejection sampler as c (ϵ ) the acceptance probabilit-
ies will always be zero or one and so no auxiliary u values are needed
to perform a probabilistic accept. For more general kernels a rejection
sampler with probabilistic accept is discussed in [262].

If we instead use a Gaussian (or other smoothly varying) kernel (4.8),
then as for the general case for importance sampling, the estimator
(4.17) is no longer unbiased. In the Gaussian kernel case we more highly
weight samples if the simulated observed variables are closer to the
data which may be viewed as preferable to equally weighting all val-
ues within a �xed tolerance as in ABC reject. However as it has sup-
port on all of X the Gaussian kernel also gives non-zero weights to all
of the samples, with typically most making little contribution to the
expectation which may be considered somewhat wasteful of computa-
tion versus the rejection scheme which creates a sparse set of samples
to compute expectations over [19]. Kernels with bounded support but
non-�at densities such as the Epanechnikov kernel [84] which has a
parabolic density in a bounded region, o�er some of the advantages of
both the uniform ball and Gaussian kernels.

Irrespective of the kernel chosen, the estimate formed is only consist-
ent for the ABC posterior expectation E[f (z) | y = y; ϵ ] rather than the
actual posterior expectation E[f (z) | x = y] we are directly interested
in. As ϵ → 0, E[f (z) | y = y; ϵ ] converges to E[f (z) | x = y], however
for reject ABC we also have that as ϵ → 0 the proportion of accep-
ted samples will tend to zero meaning that we need to expend increas-
ing computational e�ort to get an estimator for E[f (z) | y = y; ϵ ] with
a similar variance (which by a standard Monte Carlo argument is in-
versely proportional to the number of accepted samples). In the more
general importance sampling case, although we do not explicitly re-
ject any samples if using a kernel with unbounded support, we instead
have that as ϵ → 0 that the kernel weightings in (4.17) will becoming
increasingly dominated by the few samples closest to the observed data
and so the contribution to the estimator (4.17) from all but a few will
be negligible, again leading to an increasing number of samples being
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needed to keep the variance of the estimator reasonable - i.e. the same
issues which we discussed in the context of more general importance
samplers in Chapter 2. For the exact ϵ = 0 case we would only ac-
cept (or equivalently put non-zero weight on) samples for which xs is
exactly equal to y. For X ⊆ RNx if Px is absolutely continuous with re-
spect to the Lebesgue measure, the event x = y has zero measure under
Px,z

4 and so some degree of approximation due to non-zero ϵ is always
required in practice in these simple Monte Carlo ABC schemes.

When the dimensionality of the observed variable vector x is high it
quickly becomes impractical to reduce the variance of these naive Monte
Carlo estimators for (4.13) to reasonable levels without using large ϵ
which introduces signi�cant approximation error. The ABC rejection
method is well known to scale poorly with dimensionality due to curse
of dimensionality e�ects [43, 163, 213]. Although often discussed spe-
ci�cally in the context of ABC, the issues faced are much the same as
encountered when trying to use any simple rejection or importance
sampling scheme to approximate expectations with respect to a probab-
ility distribution on a high-dimensional space. If the proposal distribu-
tion (Px,z here) is signi�cantly more di�use than the target distribution
(Px,z |y here) an exponentially small proportion of the probability mass
of the proposal distribution will lie in the typical set of the target distri-
bution and so very few samples will be accepted or have non-negligible
importance weights.

Rather than conditioning on the full observed data most ABC meth-
ods used in practice therefore instead use summary statistics to extract
lower dimensional representations of the observed data [213]. A func-
tion s : X → T is de�ned which computes summary statistics from
simulated observed outputs x and observed datay with the dimension-
ality of the summaries, dim(T ), typically much smaller than Nx. The
ABC posterior expectation is then computed using

E[f (z) | s = s(y); ϵ ] =
∫
X×Z f (z) kϵ (s(y) | s(x )) Px,z (dx , dz)∫

X×Z kϵ (s(y) | s(x )) Px,z (dx , dz)
, (4.20)

with now the variable conditioned on the T -valued variable swith

Ps |x (A | x ) =
∫

A

kϵ (s | s(x )) ds ∀A ∈ B(T ), x ∈ X . (4.21)

4 In reality due the use of �nite precision arithmetic the probability of generating values
exactly consistent with data though vanishingly small is non-zero.
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In general the statistics used will not be su�cient - the posterior dis- If a, b and c are
random variables and

I[a, b] denotes the
mutual information

between a and b the

data processing

inequality states that

if a ⊥ c | b then

I[a, b] ≥ I[a, c].

tribution on z will di�er when conditioning on s(x) compared to con-
ditioning on x directly. By a data processing inequality argument we
know that the mutual information between z and s(x) will be less than
or equal to the mutual information between z and x therefore we would
expect for the posterior distribution on z given s(x) to be less inform-
ative about z than the posterior distribution given x [12]. This means
that even in the limit of ϵ → 0 estimates of the ABC summary statistics
posterior expectation will generally not converge to the true posterior
expectations of interest.

ABC methods therefore trade-o� between the approximation errors in-
troduced due to using summary statistics and a non-zero tolerance ϵ ,
and the Monte Carlo error from using a �nite number of samples in
the estimates. If informative summary statistics can be found then typ-
ically the approximation error can be kept to a more reasonable level
compared to the conditioning on the full data without the Monte Carlo
error becoming impractically large by allowing a smaller ϵ to be used
while maintaining a reasonable accept rate. Finding informative low-
dimensional summaries is often critical to getting ABC methods to work
well in practice and there is a wide literature on methods for choosing
summary statistics - see [213] and [44] for reviews.

In some cases use of summary statistics might not be viewed just as a
computational convenience, but as a purposeful exercise in removing
‘irrelevant’ information from the data. For example if inferring plaus-
ible parameter values for a dynamic model of a system given observed
sequences of the system state showing quasi-periodic behaviour, then
we might view the phase of observed state sequences as an irrelevant
artefact of the arbitrary point at which observations were started. In
this case conditioning on the exact observed data could be viewed as
over constraining the model to reproduce features of the data which are
only incidental, and using summary statistics which are invariant to
phase could be preferable to conditioning on the full data [263].

Similarly the introduction of a kernel in ABC need not be viewed as
simply a method for making inference tractable, but instead as part of
the modelling process [262]. In general we will expect any observed
data to be subject to some amount of measurement noise (at the very
least it will include some quanti�cation noise) and so conditioning the
model to reproduce the exact values of the data is not necessarily desir-
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able. In this context we can consider y the noisy measured version of an
underlying state x and the kernel Py |x as representing the measurement
noise model. We might also instead view the kernel Py |x as accounting
for the mismatch between our proposed model for how the observed
values are generated and the true data generating process [222, 262].
In both these cases we could then consider ϵ as a further unobserved
variable to be inferred.

These examples demonstrate that in some cases there may be a mod-
elling motivation for introducing summary statistics or a ‘noise’ ker-
nel. In practice however the summary statistics and tolerance ϵ seem
to be more typically chosen on grounds of computational tractability
[163, 213, 226]. Therefore inference methods which are able to maintain
computational tractability when conditioning on higher-dimensional
summaries or in some cases all observations, and when using smaller
tolerance ϵ values are of signi�cant practical interest.

4.5 abc mcmc methods

The ABC inference methods considered so far correspond to simple
Monte Carlo approaches that we previously claimed in Chapter 2 scale
poorly to large complex probabilistic models. It is natural to consider
therefore whether more scalable approximate inference methods can be
applied instead. In this section we will discuss an ABC MCMC method
[165, 240], which corresponds to an instance of the pseudo-marginal
framework introduced in Chapter 3. The methods we propose in the
following section are intended to address some of the shortcomings of
this existing approach.

There has also been a signi�cant amount of work on developing other
more scalable ABC inference schemes, with in particular methods based
on sequential Monte Carlo (SMC) [20, 72, 241, 251] having achieved signi-
�cant empirical success. Typically however ABC SMC approaches make
use of ABC MCMC moves as part of the overall algorithm therefore im-
proved MCMC methods are also of direct relevance to those frameworks.
More recently there has also been several approaches proposed for
using optimisation-based approximate inference schemes in an ABC

setting, including expectation propagation [15] and variational meth-
ods [180, 253]. These o�er an interesting alternative to the standard
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Monte Carlo based approaches, and the variational methods in particu-
lar share signi�cant aspects with some of the ideas proposed here.

As is standard in ABC methods, the ABC MCMC approach proposed in
[165] is targeted at directed generative models where the unobserved
variables have a known marginal density pz (the prior) but where we
can only generate samples from the conditional distribution Px |z (the
likelihood). The method constructs a Metropolis–Hastings transition
operator which leaves the ABC posterior distribution Pz |y invariant. We
cannot evaluate the ABC posterior density, de�ned in (4.15), as it in-
volves an intractable integral with respect to Px |z. As we can gener-
ate samples from Px |z we can however compute an unbiased and non-
negative estimate of pz,y (z,y) which is proportional to the posterior
density up to an unknown normalising constant py (y). Speci�cally if x
is generated from Px |z (· | z) then pz (z) kϵ (y | x ) is an unbiased estimate
for pz,y (z,y). We can therefore use this estimate of the (unnormalised)
ABC posterior density within a pseudo-marginal Metropolis–Hastings
transition as described in Algorithm 8, a proposal distribution used to
generate perturbative updates to the unobserved variables z and these
proposed updates accepted or rejected based on a Metropolis–Hastings
accept ratio calculated using the density estimates.

By making small changes to the unobserved variables z and so mak-
ing use of information from the previous state about plausible values
for z under the ABC posterior Pz |y rather than independently sampling
them from Pz as in the simpler Monte Carlo schemes, ABC MCMC can
often increase e�ciency in generative models with large numbers of
unobserved variables to infer [240]. This potential improved e�ciency
comes at a cost of introducing the usual di�culties associated with
MCMC methods, with successive samples now dependent and it challen-
ging to monitor convergence of the chain. Further as with the pseudo-
marginal Metropolis–Hasting chains encountered in the previous chap-
ter, ABC MCMC chains can be prone to ‘sticking’ pathologies, su�er-
ing long series of rejections. This can be considered a symptom of the
density estimator being high variance as in the previous discussion of
pseudo-marginal methods in Chapter 3, however it is instructive to con-
sider more speci�cally the cause of the issue in this setting.

Though we propose small updates to z we independently sample pro-
posed simulated observations x from Px |z in each transition to calcu-
late the density estimate. The generated x values do not take in to ac-
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count the observed data y and when the number of observed variables
is high, typically the distance between the simulated observations and
observed data will be high. This leads to the kernel term kϵ (y | x ) in
the density estimate at the new proposed z values being very small (or
zero in the case of a uniform ball kernel) and so low probability of ac-
cepting the proposed z values, even if they are plausible under the ABC

posterior distribution Pz |y. Therefore though pseudo-marginal based
ABC MCMC methods can help improve the scalability of ABC to models
with larger numbers of unobserved variables z, they still typically are
limited in the dimensionality of the observed variables x that can be
tractably supported and will usually require dimensionality reduction
of the observations with summary statistics.

4.6 abc inference in the input space

To try to overcome some of the limitations of the standard ABC MCMC

approach, we now consider reparameterising the inference problem us-
ing the formulation of a generative model as a deterministic transform-
ation of random inputs introduced in De�nition 4.1 in Section 4.2. For a
generative model (U ,F , ρ, µ, gx, gz) for observed variables x and unob-
served variables z, the ABC posterior expectation (4.13) can be repara-
meterised using the Law of the unconscious statistician (1.27) as

E[f (z) | y = y; ϵ ] = 1
py (y)

E[f (z) kϵ (y | x)]

=
1

py (y)
E[f (gz (u)) kϵ (y | gx (u))] (4.22)

=
1

py (y)

∫

U

f ◦ gz (u) kϵ (y | gx (u)) ρ (u) µ (du).

Crucially this reparameterisation takes the form of an integral of a func-
tion f ◦ gz against an explicitly de�ned probability density

πϵ (u) =
1

py (y)
kϵ (y | gx (u)) ρ (u), (4.23)

that we can evaluate up to an unknown normalising constant py (y).
This is the typical setting for approximate inference in a probabilistic
model, and so allows applying standard variants of MCMC methods to
inference in generative models. Although the target distribution de-
scribed by the density (4.23) will typically have a complex geometry
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due to the complex non-linear dependency on the simulated observed
variables x on the inputs u via the generator function gx, we are free
to use scalable MCMC methods which are better able to cope with such
complex geometries.

Importantly as all variables in the model are now being perturbatively
updated, we can avoid the curse of dimensionality e�ects that limit the
performance of standard ABC approaches when conditioning on large
numbers of observed variables. We will however still be susceptible to
the standard challenges of ensuring convergence when applying MCMC

methods in complex high-dimensional target distributions. The dimen-
sionality of the observations and choice of kernel kϵ and tolerance will
a�ect the geometry of the target density and so will have therefore
have a bearing on how well chains are able to mix.

For generator functions which are not di�erentiable or it is non-trivial
to calculate derivatives using AD, the slice-sampling methods discussed
in Chapter 2 o�er a relatively black-box approach to constructing trans-
ition operators which leave the distribution de�ned by the density (4.23)
invariant. The adaptive nature of slice sampling updates will poten-
tially give improved performance in target densities with a complex
geometry than simpler approaches such as random-walk Metropolis.
To apply slice-sampling to inference in a generative model we only re-
quire that the inputs u are real-valued (which does not preclude the
inclusion of discrete latent variables in the generative model as these
will typically be generated by transforms of standard uniform random
inputs) and that we are able evaluate the generator gx and density ρ

of the input distribution Pu. If the inputs u are marginally normally
distributed, a natural choice is the elliptical slice sampling algorithm
described in Algorithm 5. If the inputs u instead marginally have a
standard uniform distribution, then we can instead apply the re�ective
variant of linear slice sampling described in Chapter 3, and for other
input distributions with unbounded support we can use the standard
linear slice sampling method (Algorithm 4) without re�ections. If dif-
ferent subsets of the inputs have distinct properties, we may wish to
combine di�erent slice-sampling transition operators which each up-
date only a subset of the inputs.

For the case of di�erentiable generative models as de�ned in De�nition
4.2, a natural choice of MCMC method is Hamiltonian Monte Carlo. In
general in this case it will be desirable to use a Gaussian kernel kϵ as
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this is a smooth function of both inputs and if ρ has unbounded support
so will the target density (4.23). For a Gaussian kernel, the potential
energy function corresponding to (4.23) is

ϕ (u) =
1
2ϵ2 (x − gx (u))

T (x − gx (u)) − log ρ (u), (4.24)

The potential energy combines a term favouring inputs u which gener-
ate outputs close to the observed data x and prior term favouring input
values which are plausible under Pu. The gradient of (4.24) is

∇ϕ (u) = 1
ϵ2

(gx (u) − x )TJgx(u) −
1

ρ (u)
∇ρ (u). (4.25)

Although this expression involves the generator Jacobian Jgx , in prac-
tice by using reverse-mode AD we can evaluate the gradient without
explicitly evaluating the full Jacobian as it only appears as a matrix-
vector product. Typically the density ρ will have a simple form e.g.
standard normal N (u | 0, I) in which case the main complexity in the
target density arises from the term due to the Gaussian kernel kϵ and
generator function gx; this term puts high density (and low potential
energy) on inputs close to the pre-image g−1x (x ) of the observed data x
under the generator function gx. For small ϵ this will mean the distribu-
tion in the input space is increasingly tightly concentrated in a narrow
‘ridge’ around the manifold embedded in the input space correspond-
ing to g−1x (x )5. Although the gradient-based Hamiltonian dynamic is
able to propose moves which remain within this high-density region,
the strong gradients normal to the manifold tends to produce trajector-
ies which oscillate back and forth across the ridge, limiting the motion
tangential to the manifold and requiring a small integrator step-size for
stability; this is illustrated in a simple model with a two dimensional in-
put space in Figure 4.3. In practice this tends to limit how small ϵ can be
made. We consider an alternative HMC approach for directly de�ning a
dynamic on the g−1x (x ) manifold in a later section.

There is a direct link between the reparameterisation of a generative
model used here to allow application of alternative MCMC transition op-
erators to ABC inference and the reparameterisation of the density es-
timators used in pseudo-marginal MCMC methods proposed in Chapter
3. For the common special case (and typical ABC setting) of a directed

5 Such ‘ridged densities’ also arise in other contexts; a discussion of some of the geometric
and computational issues involved in simulating Markov chains in such distributions is
given in [27].
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Figure 4.3.: Illustration of oscillatory behaviour in HMC trajectories when using
an ABC target density (4.23) in the input space to a generative
model. The left axis shows the two-dimensional input space U of a
toy di�erentiable generative model with a Gaussian input density
ρ (green shading). The dashed curve shows the one-dimensional
manifold corresponding to the �bre under the generator function gx
of an observed output x . The right axis shows the same input space
with now the green shading showing the density proportional
to kϵ (x | gx (u)) ρ (u) with a Gaussian kϵ . The red curve shows a
simulated HMC trajectory using this density as the target: the large
magnitude density gradients normal to the manifold cause high-
frequency oscillations and slows movement along the manifold
(which corresponds to variation in the latent variable z).

generative model with a tractable marginal density on the unobserved
variables pz, we have that

E[f (z) | y = y; ϵ ] = (4.26)
1

py (y)

∫

Z

∫

U2

f (z) kϵ
(
y; gx |z (z, u2)

)
pz (z)ρ2 (u2) du2 dz

and so the target density for inference is

πϵ (z,u2) =
1

py (y)
kϵ

(
y | gx |z (z, u2)

)
pz (z) ρ2 (u2). (4.27)

Identifying Z = py (y), ε (z,u2) = kϵ
(
y | gx |z (z, u2)

)
pz (z) and ρ = ρ2,

this has directly the same form as (3.8). The main di�erence in the
target density (4.23) is therefore that all of the random inputs, both
those being used to generate the unobserved variables z and to gener-
ate the observed variables x given the unobserved variables, are treated
equivalently. Although a minor di�erence, the formulation used in this
Chapter helps clarify a geometric interpretation of the distribution in-
duced in the input space to a generator when conditioning on observed
values of its outputs which we will exploit in the following section.
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4.7 asymptotically exact inference in

differentiable generative models

In the reparameterising inference in terms of evaluating an integral
over the input space we have still so far required the de�nition of a
kernel kϵ and tolerance ϵ and the integral being estimated is the ap-
proximate expectation (4.13) rather than target conditional expectation
E[f (z) | x ] we are directly interested in. We now consider in the spe-
ci�c case of di�erentiable generative models how to perform inference
without introducing an ABC kernel.

We begin an initial intuition for the approach, by considering taking the
limit of ϵ → 0 in the integral (4.22) corresponding to evaluating the ABC

conditional expectation in the generator input space. We previously
showed in (4.4) that the approximate expectationE[f (z) | y = y; ϵ ] con-
verges as ϵ → 0 to the conditional expectation of interestE[f (z) | x = y],
providing that the implicit distribution of the observed variables in the
generative model Px is absolutely continuous with respect to the Le-
besgue measure with density px. Informally for kernels meeting the
conditions (4.4) and (4.5), in the limit of ϵ → 0 the kernel density
kϵ (y; gx (u)) tends to a Dirac delta δ (y − gx (u)) and so

E[f (z) | x = y] = lim
ϵ→0

E[f (z) | y = y; ϵ ] (4.28)

'
∫
U
f ◦ gz (u) δ (y − gx (u)) ρ (u) du∫

U
δ (y − gx (u)) ρ (u) du

. (4.29)

The Dirac delta term restricts the integral across the input space U toThe �bre m−1 (y) of
an element y ∈ Y

under a map

m : X → Y is the

pre-image of the

singleton set {y}
under m.

an embedded, M −Nx dimensional, implicitly-de�ned manifold corres-
ponding to the �bre of y under gx, g−1x (y) ≡ {

u ∈ U : gx (u) = y
}. It is

not necessarily immediately clear however how to de�ne the required
density on that manifold for arbitrary non-injective gx.

In di�erentiable generative models we can however use a derivation
equivalent to that given by Diaconis, Holmes and Shahshahani in [75]
for the conditional density on a manifold to �nd an expression for
the conditional expectation consistent with de�nition given in (1.30).
The key result we use is a formula from geometric measure-theory, Fe-
derer’s co-area formula [86, §3.2.12]. This generalises Fubini’s theorem
for iterated integrals on spaces de�ned by a Cartesian product to more
general partitions of a space.
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theorem 4.1 (Co-area formula): Let V ⊆ RL
and W ⊆ RK

with L ≥ K , The K-dimensional

Hausdor� measure

}K on RN
for

K ∈ N, 0 < K < N
formalises a measure

of the ‘volume’ of

K-dimensional

submanifolds of RN
-

e.g. for K = 1 it
corresponds to the

length of a curve in

RN
. Additionally

}N = λN and }0 = #.

and let m : V → W be a Lipschitz function and h : V → R a Lebesgue

measurable function. Then

∫

V

h(v) Dm (v) λ
L (dv) =

∫

W

∫

m−1 (w)
h(v) }L−K (dv) λK (dw) (4.30)

with }L−K denoting the L −K-dimensional Hausdor� measure and Dm (v)

denoting the generalised Jacobian determinant for ‘wide’ rectangular

Jacobian matrices

Dm (v) ≡ ��� Jm(u)Jm(u)T���
1
2 . (4.31)

More immediately applicable in our case is the following corollary.

corollary 4.1: If Q is a probability measure on V with density q with

respect to the Lebesgue measure λL and Jm is full row-rank Q-almost

everywhere, then for Lebesgue measurable h′ : V → R

∫

V

h′(v) q(v) λL (dv) =
∫

W

∫

m−1 (w)
h′(v) q(v) Dm (v)

−1 }L−K (dv) λK (dw).
(4.32)

This can be shown by setting h(v) = h′(v) q(v)Df (v)
−1 in (4.30) and us-

ing the equivalence of Lebesgue integrals in which the integrand di�ers
only zero-measure sets.

We �rst show that Px has a density px =
dPx
dλNx .

proposition 4.1 (Change of variables in a di�erentiable generative
model): For a di�erentiable generative model (U ,F, ρ, µ, gx, gz) as de�ned
in De�nition 4.2, then if the generator gx is Lipschitz and the Jacobian

Jgx has full row-rank Pu-almost everywhere, the observed vector x has a

density with respect to the Lebesgue measure satisfying

px (x ) =

∫

g−1x (x )
ρ (u) Dgx (u)

−1 }M−Nx (du) ∀x ∈ X . (4.33)

Proof. From De�nition 4.2 we have that x = gx (u) and dPu
dλM = ρ and so

Px (A) =

∫

U

1A ◦ gx (u) ρ (u) λM (du) ∀A ∈ B(X ).
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As gx is Lipschitz and Jgx has full row-rank Pu-almost everywhere we
can apply Corollary 4.1, and so we have that ∀A ∈ B(X )

Px (A) =

∫

X

∫

g−1x (x )
1A◦ gx (u) ρ (u) Dgx (u)

−1 }M−Nx (du) λNx (dx ).

The term 1A◦ gx (u) inside the inner integral is equal to 1A (x ) across all
points in the �bre g−1x (x ) being integrated across and so can be taken
outside the inner integral to give

Px (A) =

∫

X

1A (x )

∫

g−1x (x )
ρ (u) Dgx (u)

−1 }M−Nx (du) λNx (dx )

=

∫

A

∫

g−1x (x )
ρ (u) Dgx (u)

−1 }M−Nx (du) λNx (dx ).

By de�nition the density px of a probability measure Px with respect to
the Lebesgue measure λNx satis�es

Px (A) =

∫

A

px (x ) λ
Nx (dx ) ∀A ∈ B(X )

∴ Px has a density corresponding to (4.33) with respect to λNx . �

This is a generalisation of the change of variables formula under a dif-
feomorphism encountered previously in Chapter 1. We now derive a
result for the conditional expectation.

proposition 4.2 (Conditional expectations in a di�erentiable
generative model): For a di�erentiable generativemodel (U ,F, ρ, µ, gx, gz)
as de�ned in De�nition 4.2 and satisfying the conditions in Proposition

4.1, then for Lebesgue measurable functions f : X → R and x ∈ X such

that px (x ) > 0 we have that

E[f (z) | x = x ] =

1
px (x )

∫

g−1x (x )
f ◦ gz (u) ρ (u) Dgx (u)

−1 }M−Nx (du).
(4.34)

Proof. Restating the general de�nition for a conditional expectation
from Chapter 1, we need to �nd a measurable function E[f (z) | x ] :
X → R which ∀A ∈ B(X ) satis�es

∫

A

E[f (z) | x = x ] Px (dx ) =
∫

A×Z
f (z) Px,z (dx , dz),
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with this uniquely de�ning the conditional expectation up to Px-null
sets. Using x = gx (u), z = gz (u) and pu = ρ we have that ∀A ∈ B(X )

∫

A×Z
f (z) Px,z (dx , dz) =

∫

U

1A ◦ gx (u) f ◦ gz (u) ρ (u) λM (du).

Applying the co-area corollary (4.32) to the right-hand side and again
noting the indicator term 1A ◦ gx (u) is constant across the �bre being
integrated on, we have that ∀A ∈ B(X )

∫

A×Z
f (z) Px,z (dx , dz)

=

∫

X

∫

g−1x (x )
1A ◦ gx (u) f ◦ gz (u) ρ (u) Dgx (u)

−1 }M−Nx (du) λNx (dx )

=

∫

A

∫

g−1x (x )
f ◦ gz (u) ρ (u) Dgx (u)

−1 }M−Nx (du) λNx (dx ).

Finally using that Px has a density px with respect to the Lebesgue
measure as shown in the previous proposition, we have that

∫

A×Z
f (z) Px,z (dx , dz) =
∫

A

1
px (x )

∫

g−1x (x )
f ◦ gz (u) ρ (u) Dgx (u)

−1 }M−Nx (du) Px (dx ).

Note that as we are integrating against the probability measure Px we
can safely ignore the points for which px (x ) = 0 as the set of all such
points naturally has zero measure under Px and so does not contribute
to integral. Comparing to the de�nition of the conditional expectation
we have that (4.34) satis�es the de�nition. �

The expression derived for the conditional expectation has the form of
an integral of function f ◦ gz integrated against a density

π (u) =
1

px (x )
Dgx (u)

−1 ρ (u) (4.35)

which we can evaluate up to an unknown normalising constant px (x ).
The key complicating factor is that the integral is now not across a Eu-
clidean space, but an implicitly de�ned manifold corresponding to the
�bre g−1x (x ). However if we can construct a Markov transition operator
which has an invariant distribution with density (4.35) with respect to
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the Hausdor� measure on the manifold, then we can use samples of the
chain states {u(s )}Ss=1 to compute an estimate

f̂S =
1
S

S∑

s=1

(
f ◦ gz

(
u(s )

))
(4.36)

which providing the chain is also aperiodic and irreducible will be a con-
sistent estimator for E[f (z) | x = x ]. Although constructing a Markov
transition operator with the required properties is non-trivial, there is
a signi�cant body of existing work on methods for de�ning Markov
chains on manifolds. We propose here to use a constrained Hamilto-
nian Monte Carlo method.

4.8 constrained hamiltonian monte carlo

The HMC method introduced in Chapter 2 de�ned a transition operator
which leaves a target distribution on a Euclidean space invariant. In
our case the target distribution is de�ned on an implicitly de�ned man-
ifold g−1x (x ) embedded in a Euclidean space U = RM . Intuitively we can
consider the manifold as representing the allowable con�gurations of
mechanical system subject to a constraint. By simulating a constrained
Hamiltonian dynamic we can therefore construct a HMC transition op-
erator analogous to those discussed in Chapter 2 but that generates
chains on an implicitly de�ned manifold rather than an unconstrained
Euclidean space.

The use of constrained Hamiltonian dynamics within a MCMC method
has been proposed by multiple authors. In the molecular dynamics lit-
erature, Hartmann and Schutte [124] and Lelièvre, Rousset and Stoltz
[154] used simulated constrained Hamiltonian dynamics within a HMC

framework to estimate free-energy pro�les of molecular systems. Most
relevantly for our case, Brubaker, Salzmann and Urtasun [49] proposed
a constrained HMC algorithm for performing inference in target dis-
tributions de�ned on implicitly de�ned embedded manifolds. We will
concentrate on the algorithm proposed in [49] here.

To simplify notation and emphasise the generality of the approach bey-
ond our speci�c setting, we de�ne the following notation for the vector
constraint function on the system and corresponding Jacobian

c(u) = gx (u) − x , Jc(u) = Jgx(u). (4.37)
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The constraint manifold is then de�ned as the zero level-set of c, in our
case corresponding to the �bre of x under the generator gx

C = {u ∈ RM : c(u) = 0} = g−1x (x ). (4.38)

De�ning as in Chapter 2 the potential energy ϕ as the negative logar-
ithm of the unnormalised target density and the kinetic energy as a
quadratic form 1

2p
TM−1p where p is a vector of momenta, the Hamilto-

nian for the constrained system can be written as

h(u,p) = ϕ (u) + 1
2p

TM−1p + c(u)Tλ, (4.39)

where λ is a vector of Lagrangian multipliers for the constraints. The
constrained Hamiltonian dynamic is then de�ned by

du
dt = M−1p, dp

dt = −∇ϕ (u)
T − Jc(u)Tλ, (4.40)

with the Lagrange multipliers taking values to ensure the system con-
straints are satis�ed. In addition to the con�guration constraint c(u) =
0 there is a corresponding implied constraint on the momenta p requir-
ing that the con�guration velocity M−1p is always tangential to the
constraint manifold at the current con�guration, or equivalently that
the momenta are in the tangent space to the constraint manifold. The
tangent space TuC at a con�guration u is de�ned as

TuC =
{
p ∈ RM : Jc(u)M−1p = 0

}
. (4.41)

The complete set of valid con�guration–momentum state pairs is termed
the tangent bundle T C of the constraint manifold and de�ned as

T C =
{
u,p ∈ RM ×RM : c(u) = 0, Jc(u)M−1p = 0

}
. (4.42)

The solution at time t to the initial value problem de�ned by the ODEs

(4.40) de�nes a �ow mapγ t : T C → T C between states in the tangent
bundle of the constraint manifold. As with the unconstrained Hamilto-
nian dynamics encountered previously in Chapter 2, this �ow map
exactly conserves the Hamiltonian and is time-reversible. Further the
�ow map of the constrained dynamic is symplectic and conserves the
volume element of the constraint manifold tangent bundle [152].
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Importantly there exist symplectic integrators which can be used to ap-
proximate the constrained Hamiltonian dynamic �ow map and which
map between states exactly in the constraint manifold tangent bundle
(modulo numerical error due to �nite precision arithmetic). The ap-
proximate �ow maps de�ned by these integrators are time-reversible
and conserve the tangent bundle volume element. They also exhibit
the bounded change in the Hamiltonian over simulated trajectories dis-
cussed previously for the unconstrained case in Chapter 2.

A popular symplectic numerical integrator for constrained Hamilto-
nian dynamics is the RATTLE method [6, 153]. This a generalisation
of the leapfrog integrator encountered in our previous discussion of
HMC in Chapter 2 with additional steps to project the states on to the
tangent bundle of the constraint manifold. A RATTLE step is composed
of three component maps. The �rst map is de�ned by

γ̂a
δt (u,p) =

(
u + δtM−1 (p − Jc(u)Tλ), p − Jc(u)Tλ

)

solving for λ such that c
(
u + δtM−1 (p − Jc(u)Tλ)

)
= 0.

(4.43)

This de�nes an approximate geodesic step on the constraint manifold:
the con�guration u is incremented in the direction of the current velo-
city M−1p and then the new con�guration state projected back on to
the constraint manifold by solving a non-linear system of equations for
the Lagrange multipliers λ.

The second component map updates the momenta with a ‘kick’ in the
direction of the potential energy gradient

γ̂b
δt (u,p) =

(
u, p − δt∇ϕ (u)T

)
. (4.44)

Though both γ̂a
δt and γ̂b

δt steps will map between con�gurations in the
constraint manifold (trivially in the case of γ̂b

δt as the con�gurations
are kept �xed), the corresponding momenta will not be con�ned to
the tangent spaces to the manifold. The �nal component map projects
the momenta in to the tangent space of the constraint manifold at the
current con�guration. It is de�ned by

γ̂ p (u,p) =
(
u, p − Jc(u)Tλ

)

solving for λ such that Jc(u)M−1 (p − Jc(u)Tλ) = 0.
(4.45)
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In this case the system of equation needing to be solved is linear and has
an analytic solution, giving the following closed-form de�nition

γ̂ p (u,p) =
(
u, p − Jc(u)T (Jc(u)M−1Jc(u)T)−1Jc(u)M−1p

)
. (4.46)

An overall RATTLE step is then de�ned by the composition

γ̂r
δt = γ̂

p ◦ γ̂b
δ t
2
◦ γ̂ p ◦ γ̂a

δt ◦ γ̂ p ◦ γ̂b
δ t
2
. (4.47)

In practice the intermediate momentum projection steps γ̂ p are redund-
ant [168] and so typically the momentum is only projected back in to the
tangent space at the end of the step, giving the following update

γ̂r
δt = γ̂

p ◦ γ̂b
δ t
2
◦ γ̂a

δt ◦ γ̂b
δ t
2
. (4.48)

Solving the non-linear constraint equations in the geodesic step γ̂a
δt is

computationally challenging, with closed form solutions generally not
available and so an iterative approach required. Further the system of
equations are not guaranteed to have a unique solution: if the step size
δt is too large there can be multiple or no solutions [152]. It is important
therefore to keep the step size small enough to avoid the iterative solver
converging to an incorrect solution or not converging at all. Often the
resulting step size will be smaller than required however in terms of
controlling the Hamiltonian error over a simulated trajectory. An al-
ternative to the standard RATTLE integrator is therefore to perform
Nд > 1 inner geodesic steps γ̂a

δ t
Nд

for each outer pair of momentum

kick steps γ̂b
δ t
2

γ̂g
δt = γ̂

p ◦ γ̂b
δ t
2
◦

(
γ̂ p ◦ γ̂a

δ t
Nд

)Nд ◦ γ̂ p ◦ γ̂b
δ t
2
. (4.49)

This geodesic integrator [150, 151] scheme can reduce the number of po-
tential energy gradient evaluations required by using a larger step size
for the momentum kick updates while still maintaining a su�ciently
small step size to avoid convergence issues in the geodesic step.

Assuming the iterative solving of the projections to constraint mani-
fold in the geodesic steps converge correctly, the approximate �ow map
de�ned by iterating RATTLE or geodesic integrator steps preserves the
volume element of T C and is reversible under negation of the mo-
menta. We can therefore use the composition of the approximate �ow
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map with a momentum reversal operator to de�ne a volume-preserving
involution between states in T C. We can then use this involution as a
proposal generating mechanism for a Metropolis accept step (2.39) to
correct for the Hamiltonian error in the approximate �ow map.

As in the standard HMC algorithm, Metropolis updates with approxim-
ate �ow map proposals are interleaved with updates in which the mo-
menta are independently resampled. To ensure the momenta remain
in the tangent space TuC to the constraint manifold after generating
new values from N (0,M ), the momenta are projected in to the tan-
gent space using the projection operator de�ned in (4.46). The over-
all constrained HMC transition operator de�ned by this combination of
momentum resampling and Metropolis accept step with a constrained
dynamic proposal, leaves invariant the distribution with negative log
density de�ned by the Hamiltonian in (4.39) on the constraint manifold
tangent bundle T C, and so marginally leaves the target distribution
with density proportional to exp(−ϕ (u)) on C invariant.

Ensuring ergodicity of chains generated by the constrained HMC trans-
ition operator is in general more challenging than for HMC on Euclidean
spaces due to the often complex geometry of the constraint manifold
C and potential for numerical issues when solving the non-linear equa-
tions in the projection steps. In [49] it is shown that if6

• C is a connected, smooth di�erentiable manifold,

• Jc has full row-rank everywhere,

• and π (u) ∝ exp(ϕ (u)) is smooth and strictly positive on C

for a constrained HMC transition using an approximate �ow map de�ned
by a symplectic integrator with step size δt , if the step-size δt is set
su�ciently small such that there is a unique solution to the choice
of Lagrange multipliers λ in each geodesic step (4.43) and the iterat-
ive method employed converges to this solution in every step, that the
overall transition operator will be irreducible, aperiodic and leave the
target distribution on C invariant.

These conditions put stricter requirements on the generator gx of a
di�erentiable generative model than those speci�ed in De�nition 4.2
and Proposition 4.2 if we wish to use a constrained HMC method to

6 We give only a loose statement of the full conditions here for brevity; for complete
details see Theorems 1 to 4 in [49].
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Figure 4.4.: Visualisations of the hyperbola �bre g−1x (1) of the toy generator gx
de�ned in (4.51) consisting of two disconnected components and
the corresponding connected hyperbolic paraboloid �bre g−1y (1) of
the noisy generator.

estimate conditional expectations under the model. The requirement
that C = g−1x (x ) is a smooth and connected manifold is likely to be
challenging to check for complex generators. If the �bre of x under
the generator gx consists of multiple disconnected components then
the constrained Hamiltonian dynamic will remain con�ned to just one
of them. Although problematic, this issue is similar to that faced by
other MCMC methods in target distributions with multiple separated
modes. The requirement that the Jacobian Jgx is de�ned and full row-
rank everywhere is also stricter than previously required.

If we de�ne an augmented ‘noisy’ generator If U and V are open

subsets of RM
and

RN
respectively with

N > M and

ϕ : U → V is a

di�erentiable map,

then ϕ is a

submersion if the

Jacobian Jϕ is full

row-rank everywhere

in U .

gy (u,n) = gx (u) + ϵn (4.50)

with n ∼ N (0, I ) and ϵ a small positive constant, then if gx is dif-
ferentiable everywhere then the Jacobian of the augmented generator
Jgy will be full row-rank everywhere. That Jgy will have full-row rank
everywhere is evident from its block structure Jgy(u,n) =

[
Jgx(u)

��� ϵI] .
The Jacobian being full row-rank implies that gy is a submersion from
RM+Nx to RNx .

In some cases the �bres under the noisy generator g−1y (x ) will be con-
nected when the �bres under the original generator g−1x (x ) are not. As
a simple example consider

gx (u) = u
2
1 −u22 , gx (u,n) = u21 −u22 + ϵn. (4.51)
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The �bres g−1x (x ) are hyperbola in R2, for x , 0 consisting of two dis-
connected components as shown in Figure 4.4a. The �bres of g−1y (x ) are
connected hyperbolic paraboloids in R3 as shown in Figure 4.4b.

This noisy augmentation of the generator corresponds to using an ABC

approach with a Gaussian kernel with tolerance ϵ , and so we could in-
stead perform standard HMC using the potential energy (4.24). If ϵ is
small however, the previously discussed tendency towards oscillatory
trajectories when simulating an unconstrained Hamiltonian dynamic
using the potential energy (4.24) corresponding to a Gaussian kernel
(see Figure 4.3), can require use of a very small integrator step size.
In some cases (examples of which will be shown in the numerical ex-
periments) applying constrained HMC with the noisy generator gy can
therefore be more e�cient than running standard HMC in the ABC tar-
get density, despite the much higher per-step costs, as constrained HMC

updates are able to use a much larger integrator step size when using
small ϵ .

An alternative approach would be to apply a RMHMC algorithm to the
Gaussian kernel ABC target density in the input space (4.23) and use
a metric exploiting the geometry of this target density to improve the
behaviour of the simulated dynamic. For example the metric

G (u) =
1
ϵ2

Jgx(u)
TJgx(u) + I (4.52)

is positive de�nite everywhere and equal to the Hessian of the potential
energy (4.24) foru ∈ g−1x (x ). Using this metric, for small ϵ and inputsu
generating outputs close to the data x i.e. small values of 1

ϵ


gx (u) − x

2,

the velocity in the RMHMC dynamic du
dt = G (u)−1p will tend to be

higher along the directions tangential to the �bre g−1x (x ), reducing the
tendency for the dynamic to oscillate normal to the �bre. RMHMC re-
quires use of a computationally costly implicit integrator due to the
non-separable Hamiltonian and so like the constrained HMC method
proposed here has a signi�cantly higher computational cost per sample
than the standard HMC algorithm. However as with constrained HMC

the potential for improved exploration of the space for small ϵ may
compensate for the more costly updates. We do not explore this idea
further here but it may be an interesting avenue for future work.

Geodesic Monte Carlo [52] also considers applying a HMC scheme to
sample from non-linear manifolds embedded in a Euclidean space. Sim-
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ilarly to [49] however the motivation is performing inference with re-
spect to distributions explicitly de�ned on a manifold such as direc-
tional statistics. The method presented in [52] uses an exact solution
for the geodesic �ow on the manifold. The use of a geodesic integra-
tion scheme within a constrained HMC update as discussed here can
be considered an extension for cases when an exact geodesic solution
is not available. Instead the geodesic �ow is approximately simulated
while still maintaining the required volume-preservation and reversib-
ility properties for validity of the overall HMC scheme.

An alternative Metropolis method for sampling from distributions de�-
ned on manifolds embedded in a Euclidean space is proposed in [265].
Compared to constrained HMC this alleviates the requirements to cal-
culate the gradient of (the logarithm of) the target density on the man-
ifold, though still requiring evaluation of the constraint function Jac-
obian. As discussed in Appendix B, using reverse-mode AD the gradi-
ent of the target density can be computed at a constant factor overhead
of evaluating the target density itself. In general we would expect ex-
ploiting the gradient of the target density on the manifold within a
simulated Hamiltonian dynamic to lead to more coherent exploration
of the target distribution, instead of the more random-walk behaviour
of a non-gradient based Metropolis update, and so for the gradient eval-
uation overhead to be worthwhile.

There is extensive theoretical discussion of the issues involved in samp-
ling from distributions de�ned on manifolds in [75], including a deriv-
ation of conditional densities on a manifold using the co-area formula
which directly motivated our earlier derivations of expressions for con-
ditional expectations under a di�erentiable generative model. The ex-
periments in [75] are mainly concentrated on expository examples us-
ing simple parameterised manifolds such as a torus embedded in R3

and conditional testing in exponential family distributions.

4.9 implementation details

The constrained HMC implementation we propose for performing infer-
ence in di�erentiable generative models is shown in Algorithm 11. This
algorithm di�ers in some details from that proposed in [49] and we dis-
cuss these di�erences and some of the computational issues speci�c to
our setting in the following subsections.
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Algorithm 11 Constrained Hamiltonian Monte Carlo.
Input:
gx : observed variable generator function;
ϕ : potential energy function ϕ (u) = − log ρ (u) + 1

2 log |Jgx(u)Jgx(u) |;
x : observed data values being conditioned on;
u : current chain state (model inputs) with ‖gx (u) − x ‖∞ < ϵ ;
(φ, J ,L) : cached values of ϕ, Jgx and chol

(
JgxJgx

T
)

evaluated at u;
ϵ : convergence tolerance for Newton iteration;
I : number of Newton iterations to try before rejecting for non-convergence;
δt : integrator time step; Ns : number of time steps to simulate;
Nд : number of geodesic steps per time step.

Output:
un : new chain state with ‖gx (un) − x ‖∞ < ϵ ;
(φn, J n,Ln) : values of ϕ, Jgx and chol

(
JgxJgx

T
)

evaluated at new un.

1: n ∼ N (0, I)
2: p ← ProjectMom(n, J ,L)
3: up,pp, J p,Lp ← SimDyn(u,p, J ,L)
4: φp ← ϕ (u)
5: r ∼ U (0, 1)
6: pa ← exp

(
φ + 1

2p
Tp −φp − 1

2p
T
ppp

)

7: if r < pa then
8: un,φn, J n,Ln ← up,φp, J p,Lp
9: else

10: un,φn, J n,Ln ← u,φ, J ,L
11:

12: function SimDyn(u, p, J , L)
13: p̃ ← p − δt

2 ∇ϕ (u)T
14: p ← ProjectMom(p̃, J ,L)
15: u,p, J ,L ← SimGeo(u,p, J ,L)
16: for s ∈ {2 . . .Ns} do
17: p̃ ← p − δt∇ϕ (u)T
18: p ← ProjectMom(p̃, J ,L)
19: u,p, J ,L ← SimGeo(u,p, J ,L)
20: p̃ ← p − δt

2 ∇ϕ (u)T
21: p ← ProjectMom(p̃, J ,L)
22: return u,p, J ,L
23:

24: function ProjectMom(p, J , L)
25: return p − JTL−TL−1Jp

26: function ProjectPos(u, J , L)
27: δ ← gx (u) − x
28: i ← 0
29: while ‖δ ‖∞ > ϵ ∧ i < I do
30: u ← u − JTL−TL−1δ
31: δ ← gx (u) − x
32: i ← i + 1
33: if i = I then
34: raise RejectMove
35: return u
36:
37: function SimGeo(u, p, J , L)
38: for i ∈

{
1 . . .Nд

}
do

39: ũ ← u + δt
Nд

p

40: u ′ ← ProjectPos(ũ, J ,L)
41: J ← Jgx(u

′)
42: L ← chol

(
J JT

)

43: p̃ ← Nд
δt (u

′ −u)
44: p ← ProjectMom(p̃, J ,L)
45: ur ← u ′ − δt

Nд
p

46: ur ← ProjectPos(ur , J ,L)
47: if ‖u −ur ‖∞ >

√
ϵ then

48: raise RejectMove
49: u ← u ′
50: return u,p, J ,L

4.9.1 Iterative solver for projection on to manifold

Rather than the RATTLE integrator used in [49], we use the geodesic
integrator generalisation discussed in the previous section to simulate
the dynamic. This gives increased �exibility in balancing the need for
an appropriately small step-size to ensure convergence of the iterative
solution of the equations projecting on to the constraint manifold and
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using a more e�cient larger step size for updates to the momentum
due to the potential energy gradient. We have assumed M = I here;
other mass matrix choices can be implemented by reparameterising the
model with an initial linear transformation stage in the generator.

The projection on to the constraint manifold in the geodesic steps cor-
responding to (4.43) is performed in the function ProjectPos in Al-
gorithm 11. We use a quasi-Newton method for solving for λ the sys-
tem of equations gx (u + (δt/Nд )p − JTλ) = x where J = Jgx(u). The
true Newton update would be

u ′ ← u ′ − JT
(
Jgx(u

′)JT
)−1

(gx (u ′) − x ). (4.53)

This requires recalculating the Jacobian and solving a dense linear sys-
tem within the optimisation loop. Instead as proposed in [14] we use a
symmetric quasi-Newton update,

u ′ ← u ′ − JT
(
J JT

)−1
(gx (u ′) − x ). (4.54)

The Jacobian product J JT evaluated at the previous state is used to con-
dition the moves. This matrix is positive-de�nite and a Cholesky de-
composition can be calculated outside the optimisation loop allowing
cheaper quadratic cost solves within the loop.

Convergence of the quasi-Newton iteration is signalled when the max-
imum absolute di�erence between the generated observed variables
and the observed data is below a tolerance ϵ , i.e. ‖gx (u) −x ‖∞ < ϵ . The
tolerance is somewhat analogous to the ϵ parameter in ABC methods,
however here we can set this value close to machine precision (with
ϵ = 10−8 in the experiments) and so the error introduced is comparable
to that otherwise incurred for using non-exact arithmetic.

In some cases the quasi-Newton iteration will fail to converge. We use a
�xed upper limit on the number of iterations and reject the move (line
34 in Algorithm 11) if convergence is not achieved within this limit.
To ensure reversibility, once we have solved for a forward geodesic
step on the manifold in SimGeo, we then check if the corresponding
reverse step (with the momentum negated) returns to the original po-
sition. This involves running a second Newton iteration, though as it
reuses the same Jacobian J and Cholesky factor L, the evaluation of
which tend to be the dominant costs in the algorithm, we found the
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Figure 4.5.: Factor graphs of examples of structured directed generative models.

overhead introduced tended to be quite small (around a 20% increase
in run-time compared to only performing the forward step). A similar
scheme for ensuring reversibility is proposed in [265].

The square root of the tolerance ϵ used for the initial Newton conver-
gence check in the output space of generator (line 29 in Algorithm 11) is
used for the reverse-step check on the inputs (line 48 in Algorithm 11)
based on standard recommendations for checking convergence in op-
timisation routines [62]. In the implementation we used in the exper-
iments, we fall back to a minpack [179] implementation of the robust
Powell’s Hybrid method [212] if the quasi-Newton iteration diverges
or fails to converge, with a rejection then only occurring if both iterat-
ive solvers fail. In practice we found if the step size δt and number of
geodesic steps Nд is chosen appropriately then rejections due to non-
convergence or non-reversible steps occur very rarely.

4.9.2 Exploiting model structure

For larger systems, the Cholesky decomposition of the Jacobian matrix
product JgxJgxT (line 42) will become a dominant cost, generally scaling
cubically with Nx. In many models however conditional independency
structure will mean that not all observed variables x are dependent on
all of the input variables u and so the Jacobian Jgx has a sparse structure
which can be exploited to reduce this worst-case cost.

In particular two common cases are directed generative models in which
the observed variables x can be split into groups {xi}Gi=1 such that all of
the xi are either conditionally independent given the latent variables
z = gz (u1) (for example a model for a IID dataset), or each xi is condi-
tionally independent of all {xj}j<i−1 given xi−1 and z (most commonly
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Markov chains for example from simulation of a SDE model as shown
in Figure 1.5 though models with more general tree structured depend-
encies can also be ordered into this form).

Figure 4.5 shows factor graphs for directed generative models with
these two structures, with the conditional independencies correspond-
ing to each xi being generated as a function of only a subset u2,i of the
random input variables u2. Equivalently these structures can be con-
sidered as corresponding to generators which can be expressed in one
of the two forms below

xi = gxi |z (z,u2,i ) (independent) (4.55)

xi = fi (z, xi−1,u2,i ) = gxi |z
(
z, {u2,j}ij=1

)
(Markovian). (4.56)

For models with these structures the generator Jacobian

Jgx =
[
∂gx
∂u1

�����
∂gx
∂u2

]
(4.57)

has a component ∂gx
∂u2

which is either block-diagonal (independent) or
block-triangular (Markovian). Considering �rst the simplest case where
each (xi ,u2,i ) pair are single dimensional, the Cholesky decomposition
of JgxJgxT =

∂gx
∂u 1

∂gx
∂u 1

T
+

∂gx
∂u2

∂gx
∂u2

T
can then be computed by low-rank

Cholesky updates of the triangular or diagonal matrix ∂gx
∂u2

with each of
the columns of ∂gx

∂u 1
. As dim(u1) = L is often signi�cantly less than the

number of observations being conditioned on Nx, the resulting O (LN 2
x )

cost of the low-rank Cholesky updates is a signi�cant improvement
over the original O (N 3

x ). For cases in which each (xi ,u2,i ) pair are both
vectors of dimension D (i.e. Nx = GD) and so ∂gx

∂u2
is block diagonal or

triangular, then the Cholesky factorisation of ∂gx
∂u2

∂gx
∂u2

T can be computed
at a cost O (GD3) for block diagonal, and O (G2D3) for block triangular
∂gx
∂u2

, with then again O (LN 2
x ) cost low-rank updates of this Cholesky

factor by the columns of ∂gx
∂u 1

performed.

When xi and u2,i are vectors of di�ering dimensions, with generally
in this case dim(u2,i ) > dim(xi ) due to the requirement the total num-
ber of random inputs M is at least Nx, then though we could choose a
subset of each u2,i of equal dimension to xi so as to identify a block-
triangular component, generally any gain here will be minimal and it
may be preferable to use e�cient blocked algorithhms to compute the
Cholesky of JgxJgxT directly.
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4.9.3 E�iciently evaluating the potential energy and gradient

The Metropolis accept step and momentum updates in the SimDyn
routine require evaluating the potential energy corresponding to (4.35)
and its gradient respectively. Although this can by achieved by directly
using the expression given in (4.35) (and applying reverse-mode AD

to get the gradient), both the potential energy and its gradient can be
more e�ciently calculated by reusing the Cholesky decomposition of
the constraint Jacobian Gram matrix computed in line 42.

Dropping the dependence of the Jacobian onu for brevity we have that
the potential energy ϕ corresponding to the negative logarithm of the
unnormalised target density on the manifold (4.35) is

ϕ (u) =
1
2 log���JgxJgxT��� − log ρ (u) (4.58)

In general evaluating the determinant |JgxJgxT | has computational cost
which scales as O (MN 2

x ). However the lower-triangular Cholesky de-
composition L of JgxJgxT is already calculated in the SimGeo routine in
Algorithm 11. Using basic properties of the matrix determinant

ϕ (u) =
Nx∑

i=1
log(Lii ) − log ρ (u). (4.59)

Given the Cholesky factorL we can therefore can evaluate the potential
energy ϕ at a marginal computational cost that scales linearly with Nx.
For the gradient we can use reverse-mode AD to calculate the derivative
of (4.59) with respect tou. This requires propagating partial derivatives
through the Cholesky decomposition [182]; implementations for this
are present in many automatic di�erentiation frameworks.

Alternatively using the standard result for derivative of a log determin-
ant and the invariance of the trace to cyclic permutations we have that
the gradient of the log determinant term in (4.58) can be manipulated
in to the form

1
2
∂

∂ui
log���JgxJgxT��� = Trace

((
JgxJgx

T
)−1 ∂Jgx
∂ui

Jgx
T
)

(4.60)

= Trace
(
Jgx

T
(
JgxJgx

T
)−1 ∂Jgx
∂ui

)
(4.61)

We denote the matrix vectorisation operator vec such that for a M ×N
matrix A, we have vec(A) = [A1,1, . . . ,AM ,1,A1,2, . . . ,AN ,M ]T. Then as
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the trace of a matrix product de�nes an inner product we have that
Trace(AB) = vec(A)Tvec(B). We can therefore write the gradient of
the log determinant term as

1
2
∂

∂u
log���JgxJgxT��� = vec

(
Jgx

T
(
JgxJgx

T
)−1)T ∂vec

(
Jgx

)

∂u
(4.62)

The matrix inside the left vec operator can be computed once by reusing
the Cholesky factorisation of JgxJgxT to solve the system of equations
by forward and backward substitution. We then have an expression
in the form of a vector-Jacobian product which is provided as an e�-
cient primitive in many AD frameworks, e.g. as Lop in Theano, and like
the gradient (which is actually a special case) can be evaluated at cost
which is a constant over head of evaluating the forward function (i.e.
the cost of evaluating Jgx here).

4.9.4 Initialising the state

A �nal implementation detail is the requirement to �nd an initial u
satisfying gx (u) = x to initialise the chain at. In directed generative
models with one of the structures described in Section 4.9.2, a method
we found worked well in the experiments was to sample a u1, u2 pair
from Pu and then keeping theu1 values �xed, solve gx |z (gz (u1), u2) = x

for u2 using for example Newton’s method or by directly minimising
the Euclidean norm ‖gx |z (gz (u1), u2) −x ‖22 with respect tou2 by gradi-
ent descent. In more general cases one strategy is to randomly sample
a�ne subspaces by generating a M × Nx matrix P and M dimensional
vector b and then attempting to �nd any intersections with the mani-
fold by iteratively solving gx (Pv +b) for v, sampling a new subspace
if no roots are found.

4.10 numerical experiments

To evaluate the performance of the MCMC methods proposed in Sec-
tions 4.6 and 4.8 we performed inference experiments with three impli-
cit generative models: a quantile distribution model for an IID dataset, a
Lotka–Volterra predator-prey SDE simulator model, and di�erentiable
generator network models for human poses. In all experiments Theano
[248], a Python computation graph framework providing reverse-mode
AD, was used to specify the generator functions and compute their Jac-
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obians. Although Theano has the ability to utilise graphics processing

units (GPUs) for computation, to avoid complicating the comparison of
algorithm run times all experiments were run on a CPU (Intel Core i5-
2400 quad-core).

4.10.1 �antile distribution inference

As a �rst example we consider inferring the parameters of quantile dis-
tribution model for a IID dataset of univariate values. The generalised
Tukey lambda distribution [89, 218] is a four parameter family of dis-
tributions de�ned via its quantile function. It has very �exible form
which can describe distributions with a range of shapes, including close
approximations of standard distributions such as the normal but also al-
lowing asymmetric distributions with more general skewness and kur-
tosis. This �exibility has supported it use for statistical modelling in a
diverse range of settings, including for example �nance [64], climato-
logy [199], control engineering [201] and material science [39].

Using the inverse CDF method discussed in Chapter 2 it is simple to
generate samples given a quantile function by mapping standard uni-
form samples through the quantile function. The quantile function does
not have an analytic inverse however so the CDF and corresponding
density function do not have explicit forms. The use of ABC to per-
form Bayesian inference using quantile distributions was suggested by
Allingham, King and Mengersen in [4] with a pseudo-marginal ABC

MCMC approach used based on order statistics of the observations in
the experiments. McVinish [169] proposed a more e�cient ‘modi�ed’
ABC MCMC scheme speci�cally tailored to quantile distributions, with
interval bisection used to identify an e�cient proposal distribution for
updates to the auxiliary uniform variables mapped through the quantile
function.

We follow [169] in parameterising the quantile function of the general-
ised lambda distribution as

qgl (p | z) = z1 +
1
z2

(
pz3 − 1
z3

+
(1 −p)z4 − 1

z4

)
, (4.63)

with z1 a location parameter, z2 a positive scale parameter and z3 and
z4 shape parameters. In the experiments in [169], a synthetic dataset
x of N = 250 independent samples are generated from a generalised
lambda distribution using the quantile function (4.63) with parameters
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Figure 4.6.: Histogram of generated generalised lambda distribution dataset
used in experiments with N = 250 points generated using the
quantile function parameterisation in (4.63) with parameters z1 = 5,
z2 = 1, z3 = 0.4 and z4 = −0.1. The light orange region shows the
histogram of the generated data with the orange ticks along the
x axis indicating the actual data points. The green curve shows a
kernel density estimate of the density of the distribution using a
separate set of 10 000 independent samples.

z1 = 5, z2 = 1, z3 = 0.4 and z4 = −0.1. The task considered in [169]
is then inferring the posterior distribution on the parameters z given
observed (synthetic) data x . A prior density on z is de�ned as

pz (z) = Exp(z2 | λ)
∏

i ∈{1,3,4}
N

(
zi | 0,σ 2

)
(4.64)

corresponding to independent normal priors on each of the location
and shape parameters and an exponential prior on the scale parameter.
In the experiments in [169] the prior hyper parameters are chosen as
σ = 10 and λ = 1/10. In [169] the proposed modi�ed ABC MCMC method
is compared to a standard pseudo-marginal ABC MCMC approach and a
population Monte Carlo ABC method [20]. The proposed modi�ed ABC

MCMC algorithm was found to signi�cantly outperform the other two
approaches, and so we focus on comparing to this method.

We compare a Cython [22] implementation of the modi�ed ABC MCMC

algorithm to two of the algorithms proposed in previous sections: an
ABC approach with a Gaussian kernel kϵ , running HMC in the input
space to a di�erentiable generator for the model as discussed in Sec-
tion 4.6; the constrained HMC algorithm proposed in Section 4.8, condi-
tioning the output of a di�erentiable generator to be exactly equal to
observed data. As in [169] we use N = 250 generated data points using
the parameters z = [5, 1, 0.4, −0.1]T with the generated data used in
our experiments shown in Figure 4.6.
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We formulate the quantile distribution model as a directed di�erenti-
able generative model as follows. We de�ne a ‘prior’ generator gz for
the parameters z by

function gz(u1)
z1 ← σu1,1

z3 ← σu1,2

z4 ← σu1,3

z2 ← 1
λ log

(
1 + exp

(
π√
3u1,4

))

return [z1, z2, z3, z4]T

Here the input variables u1,1, u1,2 and u1,3 are assumed to have inde-
pendent standard normal distributions N (0, 1). The input variable u1,4,
which maps to the scale parameter z2 with an exponential prior, has a
unit-variance logistic distribution Logistic(0,

√
3/π)7. Given a vector

of inputs u1 with these distributions, gz outputs a parameter vector z
distributed according to the prior density (4.64).

The generator for the observed variables x given the parameters z and
additional random inputs u2 is then speci�ed by

function gx |z(z, u2)
for n ∈ {1 . . .N} do

pn ←
(
1 + exp

(
− π√

3u2,n

))−1

xn ← qgl (pn | z)
return [x1, x2, . . . , xN ]T

Here the input variables u2 have independent unit-variance logistic dis-
tributions Logistic(0,

√
3/π). These are transformed to standard uni-

form variables via a logistic sigmoid function, with these uniform vari-
ables then mapped through the quantile function to generate values
from the generalised lambda quantile distribution given the provided
parameter values z.

As the generated observed variables x are conditionally independent
given the parameter variables z, the Jacobian of the overall generator
gx (u) = gx |z (gz (u1),u2) has the block structure discussed in Section
4.9.2, with a dense matrix block corresponding to the partial derivatives
of the generated x with respect to the inputs u1 mapping to parameters,
and a diagonal matrix block corresponding to the partial derivatives of
the generated x with respect to the inputs u2. As described in Section

7 The reparameterisation of the exponential distribution used here is described in Table
D.1 in Appendix D
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4.9.2 this allows e�cient computation of the Jacobian product Cholesky
factor in the constrained HMC algorithm.

The modi�ed ABC MCMC method uses a proposal kernel to generate
updates to the parameters z which are then accepted or rejected in a
Metropolis–Hastings step. We follow the experiments of [169] and use
a uniform random-walk proposal densityU (z ′ | z − s , z + s ) where s is
a step-size parameter, which was tuned to give an average accept rate
of ∼ 0.25 in pilot runs, with s = 0.075 used in our experiments. The
interval bisection method used to construct the proposed updates to the
auxiliary uniform variables has a free parameterm de�ning the number
of bisection iterations; following the method used in the experiments
of [169] we usem = 16. The ABC kernel used in the modi�ed ABC MCMC

algorithm is uniform across a cubic region speci�ed by an in�nity norm
tolerance

kϵ (y | x ) = 1
ϵD

1[0,ϵ ] (‖y − x ‖∞) =
1
ϵD

D∏

d=1
1[0,ϵ ] ( |yi − xi |) (4.65)

with the product decomposition of this kernel being central to the pro-
posed e�cient update to the auxiliary variables in [169]. We follow
[169] in using a tolerance of ϵ = 0.1 in the experiments.

In pilot runs with the modi�ed ABC MCMC algorithm, we found that
when initialising chains from the normal–exponential prior (4.64) with
hyperparameters σ = 10 and λ = 1/10, that some chains failed to con-
verge, remaining at the initial state for long series of rejections even
with very small step sizes and in some cases failing completely due to
numerical over�ow. By generating additional synthetic datasets using
parameters sampled from a prior with σ = 10 and λ = 1/10 it was found
that this prior choice put signi�cant mass on settings leading to very ex-
treme sampled values and in some cases producing values beyond the
maximum range of double precision �oating point. As such extreme
variation in the target distribution seems implausible a-priori, we use
a more informative choice of prior in our experiments with σ = λ = 1,
with this choice giving a more plausible range of variation for simu-
lated datasets. We found the regularisation provided by this choice to
signi�cantly improve the stability of all the methods tested while hav-
ing a negligible impact on the inferred posteriors.
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For all the approaches tested, the chains for the parameter values z, or
correspondingly the input variables u1 in the case of the methods para-
meterised in the generator input space, were initialised from values
sampled from the prior, with the same 5 independently sampled initial
states used for all chains. For the constrained HMC chains, the initial
states of the remaining u2 input variables were set by using an optim-
isation routine to solve for values of these variables giving generated
observed outputs within an maximum elementwise distance of 10−8 of
the observed data values. These same optimised u2 initial states were
also used for the unconstrained HMC chains. This optimisation was a
negligible overhead (less than one second) and so not included in the
run time estimates.

For the constrained HMC chains we used an integrator step size δt = 0.6
and Nд = 4 inner geodesic steps per overall time step. These values
were chosen based on pilot runs to give an average accept rate in the
range 0.6 to 0.9 [35] and to minimise the occurrence of any rejections
due to non-reversible geodesic steps or convergence failure in the it-
erative solver. The number of integrator steps Ns for each constrained
HMC update was uniformly sampled from [5, 10].

For the unconstrained HMC chains using a Gaussian kernel ABC target
density in the generator input space (4.23), we ran sets of chains for
ϵ = 0.25 and ϵ = 0.05 (due to the di�erent kernel from that used in the
modi�ed ABC MCMC method the tolerance values cannot be directly
compared between the two methods). For ϵ = 0.25 we used a integ-
rator step size δt = 2.5 × 10−3 and for ϵ = 0.05, δt = 5 × 10−4, again
chosen based on trying to achieve a target accept rate in [0.6, 0.9]. We
found however that the sensitivity of the stability of the updates to δt
made it challenging to meet this requirement, with values for δt giv-
ing reasonable accept rates below 0.9 for some chains leading to other
having very low accept rates, and so the chosen δt values gave accept
rates closer to 0.95 in most cases. We sampled the number of leapfrog
steps L for each update uniformly from [20, 40] for the ϵ = 0.25 chains
and [40, 80] for the ϵ = 0.05 chains; these values were chosen relatively
arbitrarily and performance could likely be improved by tuning these
values or using the adaptive NUTS algorithm [130].

For all chains we ran initial warm-up phases which were excluded from
the estimates to allow for convergence to the posterior typical set and
reduce the estimator bias. The number of warm-up iterations for each



4.10 numerical experiments 199

chain was hand-tuned based on visualising traces of the chains and
setting the number of warm-up iterations to remove any obvious ini-
tial transient behaviour in the chains. For the constrained and uncon-
strained HMC chains we found it helped stability to use a smaller integ-
rator step size and fewer integrator steps in the warm-up phase. The
initial states have atypically high potential energy and so the momenta
quickly grow large in the simulated dynamics in the early chain itera-
tions, in some cases leading to stability issues with the step size. Using a
smaller initial step size and smaller number of integration steps and so
more frequent momentum resampling operations where the momenta
are restored to values with more reasonable magnitudes helps to alle-
viate this issue.

We used δt = 0.05 and Ns = 2 in 200 warm up iterations for each con-
strained HMC chain; δt = 10−3, L = 10 for 1000 warm up iterations for
each ϵ = 0.25 HMC chain; and δt = 2.5× 10−4 and L = 20 for 5000 warm
up iterations for each ϵ = 0.05 HMC chain. For the modi�ed ABC MCMC

chains we used 5000 warm up iterations (using the same s = 0.075 step
size as in the main runs). We ran the main sampling phase for 1000 iter-
ations for the constrained HMC chains, 30 000 iterations for the ϵ = 0.25
HMC chains, 15 000 iterations for the ϵ = 0.05 HMC chains and 100 000
iterations for the modi�ed ABC MCMC chains; in all cases this leading to
chains taking roughly �ve minutes to run each in our implementations
(we recorded exact run times for each chain including the warm-up it-

erations to use in normalising e�ciency estimates). Although perform-
ance of the di�erent methods is somewhat implementation dependent,
in all cases the use of e�cient compiled updates for the main compu-
tational bottlenecks (either via Cython for the modi�ed ABC MCMC im-
plementation or Theano for the two HMC algorithms) meant that the
interpreter overhead from using Python was at least minimal, with all
chains fully utilising a single CPU core when running.

The estimated parameter posterior distributions using the samples from
all of the chains run for each of the approaches tested are shown in Fig-
ure 4.7. We can see that the marginal posteriors generally concentrate
relatively tightly around the values of the parameters used to gener-
ate the data (shown by dashed lines), with the constrained HMC and
modi�ed ABC MCMC algorithms showing tighter estimated distributions
than the Gaussian kernel HMC chains, with the ϵ = 0.25 case being the
most di�use as expected. The estimated posterior marginals from the
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Figure 4.7.: Estimated marginal posterior distributions of generalised lambda
model parameters. Each row corresponds to samples from �ve
independent chains for MCMC method labelled to left of plot, while
each column corresponds to one of the four distribution parameters,
labelled to bottom of plot. The orange dashed line on each axis
indicates the value of the parameter used to generate the data.



4.10 numerical experiments 201

z1 z2 z3 z4
0

1

2

3

4

5

2.98

2.40 2.31

3.62

2.64 2.66
2.79 2.70

0.03 0.02 0.04 0.02

0.43
0.55

0.75

0.38

ES
S
pe
rr
un

tim
e
/s
−1

Mod. ABC MCMC Constrained HMC
ABC HMC (ϵ = 1/20) ABC HMC (ϵ = 1/4)

Figure 4.8.: Estimated ESS for posterior means of each generalised lambda
model parameter normalised by chain run time. Each coloured
set of bars corresponds to mean estimated ESS per run time across
�ve independent chains for the method indicated in the legend.
The ticks on the bars show ±1 standard error of mean.

ϵ = 0.05 HMC chains show spurious appearing irregularities not evident
in the results from the other chains, which is indicative of convergence
issues in the chains. The estimated PSRF statistic for the ϵ = 0.05 HMC

chains was R̂ = 1.21 which also suggests convergence problems; for
both the constrained HMC and modi�ed ABC MCMC chains R̂ = 1.00
while for the ϵ = 0.25 HMC chains R̂ = 1.03.

Figure 4.8 shows estimates of the ESS for the posterior means of each
model parameter normalised by the chain run time in seconds for each
of the four approaches tested. The coloured bars show the mean values
across the �ve independent chains for each method and the black ticks
plus or minus one standard error of mean. Although as noted above the
real-time performance of the methods is somewhat implementation de-
pendent, it seems that the proposed constrained HMC method performs
broadly about as well as the modi�ed ABC MCMC approach here in terms
of sampling e�ciency, while the methods performing HMC in the gen-
erator input space using a Gaussian ABC kernel are signi�cantly less
e�cient.

That the proposed constrained HMC method works about as well as an
algorithm custom tuned to this particular problem is encouraging. Fur-
ther given the generally improved relative performance of HMC meth-
ods compared to random-walk Metropolis based methods as the di-
mension of the target distribution grows, it seems plausible that the
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comparison would be even more positive towards the constrained HMC

method in models with larger numbers of parameters. It is interesting
to note that both approaches use iterative optimisation methods within
the inner loop of the algorithms: in the modi�ed ABC MCMC method in-
terval bisection is used to �nd a relatively tight bounding box on the
allowable values of the auxiliary uniform variables used to generate
the simulated data given the current parameter values, while in our
constrained HMC approach a quasi-Newton iteration is used to project
on to the constraint manifold in the input space corresponding to the
�bre of observed data under the generator function gx. In both cases
this helps overcome the curse of dimensionality e�ects typically exper-
ienced when conditioning on high-dimensional observed data in ABC

inference problems.

The ABC Gaussian kernel HMC approaches also use gradient informa-
tion to bias proposed updates to the generator inputs towards values
producing outputs consistent with the data. However the complex ‘nar-
row ridge’ geometry of the target density in the input space (as illus-
trated for a simple example in Figure 4.3) tends to require small integ-
rator step sizes which limits the overall e�ciency of the approach.

4.10.2 Lotka–Volterra parameter inference

As a second test case we considered inferring the parameters of a SDE

variant of the Lotka–Volterra predator–prey model, a common example
problem in the ABC literature e.g. [171, 202]. In particular given (syn-
thetic) observed predator–prey population data we consider inferring
the model parameters of the following SDEs

dr = (z1r − z2r f )dt + dnr , df = (z4r f − z3 f )dt + dnf , (4.66)

where r represents the prey population, f the predator population,
{zi}4i=1 the system parameters andnr andnf are zero-mean white noise
processes.

A simulator for these SDEs can be formed by using an Euler–Maruyuma
[141] integration scheme to generate simulated realisations of the sto-
chastic process at discrete time points. If the white-noise processes nr
andnf have variancesσ 2

r andσ 2
f respectively, then an Euler–Maruyama

discretisation of Ns time points of the SDEs 4.66 with an integrator time
step δt and initial system state (r0, f0) can be generated given a vec-
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tor of standard normal random variates u2 as de�ned in the following
pseudo-code.

function gx |z(z, u2)
r0 ← r0

f0 ← f0

for s ∈ {1 . . .Ns} do
rs ← rs−1 + δt (z1rs−1 − z2rs−1fs−1) +

√
δtσru2,2s

fs ← fs−1 + δt (z4rs−1fs−1 − z3fs−1) +
√
δtσf u2,2s+1

x← [r1, f1, . . . rNs , fNs ]

return x

As suggested by the notation we can consider this Euler–Maruyama
integration as de�ning the observed generator of a directed generative
model, mapping from the unobserved parameter variables z and an aux-
iliary vector of standard normal random inputs u2 to a vector formed
by the concatenation of the simulated state sequences. This mapping
is di�erentiable with respect to z and u2 and so de�nes a di�erentiable
generative model. The generator in this case has the Markovian struc-
ture discussed in Section 4.9.2 allowing e�cient computation of the
Cholesky factor of the Jacobian matrix product JgxJTgx . This Markovian
structure is present only when all simulated time steps of the SDEs are
observed: if for example a smaller integrator time step δt/M was used
to decrease the approximation error in simulated realisations and sim-
ulated observations only recorded every M time points for some posit-
ive integer M , then the generator Jacobian would not longer have the
structure discussed in Section 4.9.2.

In the parameterisation used in (4.66), all of the parameter variables z
are required to be positive. A simple choice of a prior distribution on
the parameters is therefore a log-normal distribution

pz (z) =
4∏

i=1
LogNorm(zi |mi , si ) (4.67)

A generator function for the parameters can then be de�ned by

function gz(u1)
z← exp(s � u1 +m)

return z

where u1 is an input vector of standard normal variables.
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Figure 4.9.: Traces of generated realisations of Lotka–Volterra SDE model (4.66)
used as the observations in the experiments.

For the experiments we generated a synthetic observed data set x =
[r1, f1, . . . r50, f50]T of Ns = 50 simulated time points of predator–prey
population state sequences using the Euler–Maruyama generator func-
tion de�ned above with an integrator time-step δt = 1, white noise
process standard deviation σf = σr = 1, initial condition r0 = f0 = 100
and model parameter values z1 = 0.4, z2 = 0.005, z3 = 0.05, z4 = 0.001
(chosen to give stable, oscillatory dynamics). The generated sequences
used in the experiments are shown in Figure 4.9. We then considered
the problem of inferring the ‘unknown’ model parameters z (with the
initial states, integrator time step and noise variances assumed to be
known) given the observed data x and generative model.

For the parameter log-normal prior, we used location hyperparamet-
ers mi = −2 ∀i and scale hyperparameters to si = 1 ∀i . As in the
generalised lambda distribution experiments in the previous section
this choice of a relatively informative prior was motivated by trying
to minimise the prior probability mass put on parameters correspond-
ing to implausible generated sequences, with in particular in this case
the Lotka–Volterra dynamics being unstable for many parameter set-
tings, with an exponential blow-up in the prey population if the pred-
ator population ‘dies o�’. This exponential blow-up is both biologically
implausible and causes computational issues as it can lead to numerical
over�ow. Biasing the prior towards smaller values was found to favour
more plausible appearing sequences with stable dynamics.

We �rst tested several standard ABC approaches to perform inference,
conditioning on the full observed data sequences i.e. without use of
summary statistics. ABC rejection using a uniform ball kernel failed
catastrophically, with no acceptances in 106 samples even with a very
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large tolerance ϵ = 1000. Pseudo-marginal ABC MCMC with a Gaus-
sian random-walk proposal distribution also performed very poorly
with the dynamic having zero acceptances over multiple runs of 105

updates for ϵ = 100 and getting stuck at points in parameter space over
thousands of iterations for larger ϵ = 1000, even with very small pro-
posal steps. Similar issues were also observed when attempting to run
pseudo-marginal ABC MCMC chains using a Gaussian kernel. This poor
performance is not unexpected, but highlights the challenges of work-
ing with high-dimensional observations in standard ABC approaches.

We next attempted to reduce the dimensionality of the observed data
and generated observations by using a set of summary statistics. We
used the nine summary statistics employed in a similar Lotka–Volterra
inference problem in [202] - the means and log variances of the two
sequences, lag one and lag two autocorrelation coe�cients and cross-
correlation coe�cient of the sequences. To account for the di�ering
scales of the nine statistics, they were normalised by dividing each
by the empirical standard deviations of the summary statistics of 106

observed sequences generated from the prior, with any sequences in
which numerical over�ow occured or either population exceeded 105

excluded from the standard deviation estimates.

Even when reducing to this much lower dimensional space, ABC reject
continued to have a very low accept rate, with only 22 accepted samples
from 5 × 107 draws from the prior for a uniform ball kernel with ϵ =

2 and no accepted samples from 5 × 107 draws from the prior using
ϵ = 1. Using this set of summary statistics we were however able to
successfully run pseudo-marginal8 ABC MCMC chains which appeared
to converge (PSRF statistic of R̂ = 1.00 across ten independent chains of
500 000 samples) when using a uniform ball kernel with ϵ = 1 on the
nine-dimensional normalised summary statistics.

A histogram of the resulting estimated marginal posteriors on the model
parameters from the last 250 000 samples of ten 500 000 sample chains
is shown in Figure 4.10 with the orange dashed lines indicating the val-
ues of the parameters used to generate the data. The data generating
parameters are located within the mass of the estimated marginal pos-
teriors of z1, z2 and z3 parameters, however this is not the case for the

8 We in fact used a ‘split’ auxiliary pseudo-marginal MI+MH form of update as discussed
in Chapter 3, as this simpli�ed tuning of the Gaussian random-walk proposal step-size
to give an accept rate of ∼ 0.234 as discussed previously.
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Figure 4.10.: Estimated marginal posterior distributions of Lotka–Volterra
model parameters using random-walk Metropolis pseudo-
marginal ABC MCMC chains with nine-dimensional summary stat-
istics and a uniform ball kernel with ϵ = 1. Each histogram cor-
responds to last 250 000 samples from ten independent chains of
500 000 samples. The orange dashed line on each axis indicates
the value of the parameter used to generate the data.

estimated marginal posterior of the z4 parameter with the data gener-
ating value outside the range of the posterior samples. Although there
is nothing to guarantee that the true posterior is centred at the para-
meters used to generate the data9 the discrepancy between where the
posterior mass is located and the parameters used to generate the data
is potentially concerning. We will see in later results that the posterior
distributions conditioned on the summary statistics of generated ob-
servations exactly matching the data summary statistics appears to be
concentrated around the data generating parameters as does the ABC

posterior when conditioning on all of the data. It therefore seems that
it may be the combined use of summary statistics and an ABC kernel
which is leading to a non-representative posterior distribution estimate
(in the sense of being representative of the true posterior we are inter-
ested in). These issues highlight the challenges in assessing the impact
of the choice of summary statistics and tolerance on the inferred pos-
terior in ABC methods.

As the generative model here is di�erentiable we are able to apply our
proposed constrained HMC method in the input space of the generator
to construct chains directly targeting the posterior distribution of in-
terest, constraining the output of the generator to be equal to the ob-
served data (to within a 10−8 in�nity norm distance used as the con-
vergence tolerance in the Newton iteration). We ran ten independent
constrained HMC chains of 1000 samples, using an integrator time step

9 In general we would only expect the parameters to be a plausible sample under the
posterior; if the parameters were sampled from the prior then they would represent an
exact sample from the posterior given the generated data.



4.10 numerical experiments 207

0

2

4

6

8

10

12
Co

ns
.H

M
C
(a
ll)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

Co
ns
.H

M
C
(su

m
.)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
BC

SS
(U

,ϵ
=
10
)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
BC

SS
(U

,ϵ
=
10
0)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
BC

SS
(G

,ϵ
=
10
)

0

5

10

0

2

4

0

2

4

6

-2 -1.5 -1 -0.5
0

2

4

6

8

10

12

log z1

A
BC

H
M
C
(G

,ϵ
=
10
)

−6.5 −6 −5.5 −5
0

5

10

log z2
-3.5 -3 -2.5 -2

0

2

4

log z3
−7.5 −7 −6.5 −6

0

2

4

6

log z4

Figure 4.11.: Estimated marginal posterior distributions of Lotka–Volterra
model parameters. Each row corresponds to samples from ten
independent chains for MCMC method labelled to left of plot, while
each column corresponds to one of the four distribution paramet-
ers, labelled to bottom of plot. The orange dashed line on each axis
indicates the value of the parameter used to generate the data.
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δt = 0.25, the number of integrator time steps per proposed update Ns

uniformly sampled from [4, 8] on each iteration, Ni = 3 inner geodesic
steps per update and a Newton convergence tolerance of ϵ = 10−8. As in
the experiments in the previous section, the initial states for the chains
were computed by sampling random values of the input variables u1

corresponding to the model parameters and then solving for the values
of the remaining random inputs u2 giving a generated output equal
to the observed data using the fsolve optimisation routine in SciPy

[134]. Based on visualisation of traces, the �rst ten iterations of each
chain were removed as ‘warm-up’ iterations.

To test how informative the nine summary statistics used in the ABC

MCMC methods are, we also ran constrained HMC chains in the posterior
distribution formed by constraining the summary statistics of the gen-
erated observed variables x to be equal to the summary statistics of
the observed data x . As the summary statistics are all di�erentiable
functions of the generated observations here, we can simply de�ne an
augmented generator which outputs summaries rather than full obser-
vations and use this in the constrained HMC update in Algorithm 11.
We used the same initial input states and algorithm settings for these
chains as for the full data case.

The resulting estimates of the marginal posteriors on the model para-
meters formed using the samples from the constrained HMC chains run
in these two cases are shown in the top two rows in Figure 4.11, with
the top row (labelled ‘Cons. HMC (all)’) corresponding to the posterior
distribution conditioned on all of the data, and the second row (labelled
‘Cons. HMC (sum.)’) corresponding to the posterior distribution condi-
tioned on just the summary statistics of the data. It can be seen that in
both cases the estimated posteriors are concentrated around the para-
meter values used to generate the data (indicated by orange dashed
lines), unlike the previous results in Figure 4.10. Interestingly there
seems to be minimal loss of information about the parameters when
conditioning on just the summary statistics rather than the full data
here, with the estimated marginal posteriors for the summary statist-
ics chains only barely noticeably more di�use than the corresponding
marginal posterior estimates for the full data chains. In both cases the
estimated PSRF statistics across the 10 chains are R̂ = 1.00.

We also tested our proposed approach of performing ABC inference by
running chains in the input space to the generator, as discussed in Sec-
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tion 4.6. Encouragingly we found that by performing MCMC updates to
the random inputs to the generator, we are able to tractably perform
ABC inference when conditioning on the full observed data, even when
using relatively simple non-gradient based MCMC methods. In particu-
lar based on the auxiliary pseudo-marginal slice sampling methods dis-
cussed in Chapter 3, we tried using alternating elliptical slice sampling
updates of the random inputs u1 used to generate the parameters, i.e.
z = gz (u1), and remaining random inputs u2 used to generate the sim-
ulated observations given parameters, i.e. x = gx |z (z,u2). Using this
method, which has zero free parameters to tune, we were able to con-
struct chains which appeared to converge to a reasonable approximate
posterior both when using a uniform ball kernel with ϵ = 100 and
ϵ = 10 and when using a Gaussian kernel with ϵ = 10. We also ran HMC

chains with a ϵ = 10 Gaussian kernel, using an integrator time step
δt = 2.5 × 10−3 and a number of leapfrog steps per update L sampled
uniformly from [10, 20]. For the slice sampling approaches we ran 10
independent chains of 60 000 samples for each kernel and tolerance
combination, discarding the �rst 30 000 samples as warm-up iterations,
and for the HMC case we ran 10 independent chains of 10 000 samples,
discarding the �rst 5000 samples as warm-up iterations.

Estimates of the marginal posterior distributions on the parameters for
these chains are shown in the last four rows of Figure 4.11, with the la-
bel ‘ABC SS’ indicating elliptical slice sampling chains and ‘ABC HMC’
the HMC chains and aU in parenthesis in the label indicating use of uni-
form ball kernel and aG in parenthesis in the labelG a Gaussian kernel,
with in both cases the corresponding ϵ tolerance also given in the par-
entheses. It is immediately evident that the estimated ABC marginal pos-
teriors here are more di�use than for the constrained HMC chains, par-
ticularly for the slice sampling chains using a uniform ball kernel with
ϵ = 100 (fourth row), though the estimated posteriors are still signi�c-
antly more concentrated than for the summary statistic based ABC pos-
terior shown in Figure 4.10 (note the di�erence in the horizontal scales
compared to Figure 4.11). Unlike the summary-statistic based pseudo-
marginal ABC MCMC estimates in Figure 4.10 though, all of the marginal
posterior estimates for these ABC methods using the full set of obser-
vations are concentrated around the region of the parameters used to
generate the data, and seem to broadly consistent, albeit more di�use,
with the constrained HMC estimates of the true posterior.
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- slice sampling, summ. - summary statistics, G - Gaussian kernel,
U - uniform ball kernel). The ticks on the bars show ±1 standard
error of mean.

Between the four di�erent approaches, the estimates of the ABC pos-
terior using a uniform ball kernel with ϵ = 10 (third row) are closest
to the constrained HMC estimates of the true posterior (�rst row), with
in particular the marginal estimates for z1 and z2 visually very similar.
For the z3 and z4 marginal posterior estimates in the uniform ball ker-
nel ϵ = 10 case there are spurious appearing peaks however suggesting
possible convergence issues and this is backed up by a PSRF statistic of
R̂ = 1.89 across the 10 chains. Although not as visible in the marginal
posterior estimates, the Gaussian kernel HMC chains also su�ered con-
vergence issues, with a PSRF statistic of R̂ = 1.33 across the 10 chains.
The ϵ = 10 Gaussian kernel and ϵ = 100 uniform ball kernel slice
sampling chains both had estimated PSRF statistics of R̂ = 1.01.

We also measured the sampling e�ciency of the chains generated us-
ing the di�erent approaches by computing ESS estimates for each para-
meter and normalising by the total chain run-time (including warm-up
iterations), with the results shown in Figure 4.12. As there are quite
signi�cant di�erences between the distributions being targeted by the
chains of most of the methods, as well as potential di�erences in the
relative e�ciencies of the implementations, the run time normalised
ESS estimates can only give a rough indication of relative performance.
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Subject to those provisos however, the results suggest the constrained
HMC methods are potentially signi�cantly more e�cient than the al-
ternative approaches here, despite also giving in some sense the closest
estimates of the true posterior.

Somewhat counter-intuitively perhaps, the constrained HMC chains con-
ditioned on the full data showed higher sampling e�ciency than those
conditioned on the reduced dimension summary statistics. Given the
earlier statement that a dominant cost in the constrained HMC algorithm
is the computation of the Cholesky decomposition of the generator Jac-
obian product, chol JgxJTgx , which in general will scale cubically with the
dimension of the generator output, it might be expected that project-
ing the generator output to a lower-dimensional space would lead to
lower-cost updates and so improved e�ciency. While this may be the
case in some settings, here there is the additional factor that the gen-
erator Jacobian for the full observations case has the triangular block
structure discussed in Section 4.9.2, which allows a more e�cient com-
putation of the Cholesky factor using low-rank updates. This structure
is lost when projecting down to lower dimensions, and so a standard
cubic-cost Cholesky factorisation routine needs to be used. In models
without such structure however and with large numbers of observed
variables, projecting down to lower-dimensional summaries could be
an important method for improving the scalability of the constrained
HMC approach (providing the summaries are di�erentiable functions
of the observations), and as shown in the example here, in some cases
may entail minimal loss of information about the unobserved variables
being inferred.

4.10.3 Human pose and camera model inference

For the �nal experiment in this Chapter we consider inference in an
di�erentiable generative model for human poses. In particular we con-
sider the task of inferring a three-dimensional human pose given bin-
ocular two-dimensional projections of joint positions, using a learnt
prior model of poses from motion capture and anthropometric data,
and a simple projective pin-hole camera model.

We parameterised the poses used a 19 joint skeleton model, with de-
grees of freedom specifying the angular con�gurations of each joint
and the lengths of the bones between joints. In total the model has 47
local joint angles za (with some joints, for example those correspond-
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Figure 4.13.: Factor graph of human pose di�erentiable generative model. The
operations corresponding to the deterministic nodes (�) in the
graph are described in Algorithm 12.

Algorithm 12 Human pose model generator functions.
Input:

{W ` ,b`}L`=0 : parameters of pose angle di�erentiable network;
µb , Σ : mean and covariance of skeleton bone lengths;
µc ,:2, σ c ,:2 : camera x ,y coordinates normal prior parameters;
µc ,2, σc ,2 : camera z coordinate log-normal prior parameters;
JointPositions : maps pose angles and bone lengths to joint positions;
CameraMatrices : maps camera parameters to a pair of camera matrices;
Project : uses camera matrix to map world to image coordinates;
Partition : partitions a vector in a speci�ed number of equal length parts;
Flatten : �attens a multidimensional array to a vector.

function gz([uh ; u1; u2; ub ; uc ])
hL ← DifferentiableNetwork(uh )
m1,k1,m2,k2 ← Partition(hL , 4)
r1 ← exp(k1) � u1 +m1
r2 ← exp(k2) � u2 +m2
za ← atan2(r2, r1)
zb ← exp(µb + Σbub

)

zc ,:2 ← σ c ,:2 � uc ,:2 + µc ,:2
zc ,2 ← exp(σc ,2uc ,2 + µc ,2)
return [za ; zb ; zc ]

function DifferentiableNetwork(uh )
h0 ← tanh(W 0uh +b0)
for ` ∈ {1 …L − 1} do

h` ← tanh(W `h`−1 +b` ) + h`−1
returnW LhL−1 +bL

function gx |z([za ; zb ; zc ])
P← JointPositions(za , zb )
C1, C2 ← CameraMatrices(zc )
X1 ← Project(C1,P)
X2 ← Project(C2,P)
return Flatten([X1;X2])
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ing to knees and elbows, not having a full three degrees of freedom).
The prior over the joint angles was speci�ed by a Gaussian VAE model
trained on the PosePrior motion caption dataset [3]. The circular topo-
logy of the angular data is poorly matched by the Euclidean space a
Gaussian VAE typically learns a distribution on, and simply ‘unwrap-
ping’ the angles to e.g. [−π ,π ) leads to unnatural discontinuities at the
±π cut-point, this both making the initial learning problem challen-
ging (as there is no in-built prior knowledge of continuity across the
cut-point) and tending to lead to a learned latent space less amenable to
MCMC inference as ‘nearby’ poses with one or more joint angles on op-
posite sides of the cut-point will likely end up corresponding to points
far apart in the latent space.

During training we therefore mapped each vector of 47 joint angles
z (i )a (corresponding to a single motion capture datapoint) to a pair of
47-dimensional vectors (r (i )

1 ,r (i )
2 ) by sampling a Gaussian random vec-

tor n(i ) ∼ N (0, I) and then computing r (i )
1 = expn(i ) � cosz (i )a and

r (i )
2 = expn(i ) � sinz (i )a and training the VAE to maximise (a variational

lower bound) on the joint marginal density of the {r (i )
1 , r (i )

2 }i pairs. At
the cost of doubling the dimension, this leads to an embedding in a Eu-
clidean space which does not introduce any arbitrary cut-points and
empirically seemed to lead to better sample quality from the learned
generative model compared to learning the angles directly. Given the
trained model we can generate a vector of angles za using the model
by sampling a Gaussian code (latent representation) vector uh from
N (0, I) then sampling a pair of 47-dimensional vectors r1 and r2 from
the learnt Gaussian decoder model given uh (and further Gaussian ran-
dom input vectors u1 and u2), and �nally recovering an angle by com-
puting za = atan2(r2, r1). The resulting distribution on za is only im-
plicitly de�ned, but the overall generative model is di�erentiable with
respect to the input vectors uh , u1 and u2.

The PosePrior motion capture data includes recordings from only a re-
latively small number of distinct actors and so limited variation in the
‘bone-lengths’ of the skeleton model. Therefore a separate log-normal
model for the bone lengths zb was �tted using data from the ANSUR

anthropometric data-set [111], due to symmetry in the skeleton thirteen
independent lengths being speci�ed.
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A simple pin-hole projective camera model with three position para-
meters zc and �xed focal-length was used10. A log-normal prior distri-
bution was placed on the depth co-ordinate zc ,2 to enforce positivity
with normal priors on the other two co-ordinates zc ,0 and zc ,1.

Given a generated triplet of joint-angles, bone length and camera para-
meters za , zb and zc , a binocular pair of simulated two-dimensional
projection of the skeleton x are generated by �rst mapping the joint-
angles and bone-lengths to a 4 × 19 matrix of joint positions P in (ho-
mogeneous) world-coordinates by recursing through the skeleton tree.
Two 3× 4 projective camera matrices C1 and C2 are generated from zc
(with a �xed known o�set between the camera centres) and then used
to project the world-coordinate joint positions to two 2 × 19 matrices
X1 andX2 of joint positions in two-dimensional image-coordinates. The
projected positions matrices X1 and X2 are �attened to a vector to give
the 19 × 2 × 2 = 76 dimensional observed vector x. The overall corres-
ponding model generator functions gx |z and gz are described procedur-
ally in Algorithm 12 and a factor graph summarising the relationships
between the variables in the model shown in Figure 4.13.

The generator gx here has a complex form, not corresponding to either
the independent or Markovian observations structures discussed in Sec-
tion 4.9.2. The total input dimension is M = 140 and output dimen-
sion Nx = 76. The resulting generator Jacobian Jgx is not full row-rank
across the input space; for this binocular observation case this is not
surprising as there are a maximum of 19 × 3 = 57 true degrees of free-
dom in the skeleton model (three degrees of freedom for each joint)
versus the Nx = 76 observed dimensions. We therefore de�ne an ‘aug-
mented’ noisy generator gy (u,n) = gx (u) + ϵn to use to perform infer-
ence with as discussed in Section 4.6. We set the noise standard devi-
ation ϵ = 0.01 which produces a non-obvious level of perturbation in
visualisations of the generated two-dimensional projections. Similar to
the earlier discussion of ABC kernels, we can either consider this addi-
tional noise as a computational approximation or as part of the model,
representing for example the measurement noise that would be present
in two-dimensional joint positions derived from image data.

10 The camera orientation was assumed �xed to avoid replicating the degrees of freedom
speci�ed by the angular orientation of the root joint of the skeleton: only the relative
camera–skeleton orientation is important.
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Under this noisy generator model, the joint density on the generated
outputs y and inputs u has an explicit form

py,u (y,u) = N
(
y | gx (u), ϵ2I

)
N (u | 0, I ), (4.68)

and so the resulting posterior density pu |y on the model inputs u given
observed y values can be evaluated up to a normalising constant. This
is directly equivalent to an ABC posterior density in the input space
(4.23) when using a Gaussian kernel.

We generated three sets of binocular two-dimensional joint position
projections to use as the observed data for the inference experiments
using the noisy generator function; these are shown in the left column
of Figure 4.14. Given each of these observed binocular joint projections,
we then attempted to infer the corresponding plausible values for the
model inputs u and so by consequence as they are a deterministic func-
tion of the inputs, the latent variables za , zb and zc de�ning the three-
dimensional scene information.

We ran chains using the proposed constrained HMC method with the
noisy generator gy, the chain state in this case being de�ned as both
u and n, and chains using standard HMC transitions on the posterior
density pu |y on the model inputs u. We used a integrator step size of
δt = 0.05 for the constrained HMC chains, Nд = 8 inner geodesic steps
and a number of integrator steps per proposed update Ns uniformly
sampled from [10, 20]. We ran �ve chains of 200 samples each from
independent initialisations. To compute the initial states for the chains,
we generated u values independently from the N (0, I ) prior and then
set the n values to 1

ϵ

(
x − gy (u)

)
where u are the values sampled from

the prior and x is the observed data being conditioned on.

For the standard HMC chains we used an integrator step size of δt =
2 × 10−4 and a number of leapfrog steps L per proposed update ran-
domly sampled from [100, 200]. We again ran �ve chains, independ-
ently sampling the initial u state from the normal prior, and running
each chain for 1200 samples. The small integrator step size used here
was the result of higher step sizes leading to some chains accepting very
few or in some cases no updates. This issue was also encountered when
using smaller numbers of leapfrog steps per update, including just one
integrator step, with these chains however showing marginally slower
overall run-time adjusted convergence. Given the small size of ϵ here
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Figure 4.14.: Results of binocular pose inference experiments. In each row the
left column shows the generated binocular two-dimensional joint
position projections used as the observed data for inference. The
right column shows plots of the RMSEs of posterior mean estim-
ates of true 3D pose used to generate the binocular projections,
using samples from a constrained HMC chains (green) versus stand-
ard HMC chains (orange). The horizontal axes of the plot show
computation time to produce number of samples in the estimate.
Solid curves are averages of RMSEs over �ve chains independently
initialised from the prior and shaded regions show ±3 standard
deviations.
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and the resulting tight concentration of the posterior mass around the
�bre g−1x (x ), the need for a small step size when using an unconstrained
HMC approach is not surprising, however the ability of the constrained
HMC updates to support a much larger step size is encouraging.

Due to the high-dimensional nature of the latent variables being in-
ferred it is challenging to assess the convergence of the chains here. As
a proxy measure for convergence, we computed the root mean squared

error (RMSE) of an estimate of the three-dimensional joint positions com-
pared the true positions, computed using the mean of the three-joint po-
sitions generated from the posterior u input samples. In this binocular
case, the disparity in projected joint positions between the two projec-
tions gives information about the distances of the corresponding joints
from the image plane in the depth direction and so we would expect
the posterior distribution on the three-dimensional pose to be concen-
trated around the true values used to generate the observations.

The right column of Figure 4.14 shows the RMSE values as a function
of the computation time taken to generate the number of samples in-
cluded in the estimate, for each of the three generated scenes (with the
projection visualisations corresponding to the RMSE plots in each row).
The constrained HMC chains (green curves) consistently give position
estimates which converge more quickly towards the true positions. In
this case standard HMC performs relatively poorly despite the signi�c-
antly cheaper cost of each integrator step compared to the constrained
dynamics. The posterior distribution on the model inputs appeared to
be multimodal here, with the chains often appearing to converge to
slightly di�erent modes. Visually inspecting the sampled poses and in-
dividual run traces (not shown) it seems that there are a number of
local modes corresponding to a small subset of joints being ‘incorrectly’
positioned; both the HMC and constrained HMC chains are likely to be
equally susceptible to getting stuck in local modes, as neither dynamic
is likely to overcome large energy barriers.

To highlight the generality of the approach, we also considered infer-
ring three-dimensional scene information from a single two-dimension-
al projection. Monocular projection is inherently information destroy-
ing with signi�cant uncertainty to the true pose and camera paramet-
ers which generated the observations. Figure 4.15 shows pairs of ortho-
graphic projections of 3D poses: the left most column is the pose used
to generate the projection conditioned on and the right three columns
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Figure 4.15.: Orthographic projections (top: front view, bottom: side view) of
3D poses consistent with monocular projections. Left most pair
(black) shows pose used to generate observations, right three show
constrained HMC samples.

are poses sampled using constrained HMC consistent with the observa-
tions. The top row shows front x–y views, corresponding to the camera
view though with a orthographic rather than perspective projection,
the bottom row shows side z–y views with the z axis the depth from
the camera. The dynamic is able to move between a range of plausible
poses consistent with the observations while re�ecting the inherent
depth ambiguity from the monocular projection.

4.11 discussion

The formulation of generative models as deterministic functions of ran-
dom input variables discussed at the beginning of this chapter proved a
useful intuition for considering more e�cient MCMC approaches to per-
forming approximate inference in implicit generative models. Under
this description of a generative model, the task of MCMC inference can
be reposed from the problem of constructing a Markov chain exploring
the posterior distribution on the latent variables z of direct interest in
the downstream task, to constructing a chain targeting the posterior
distribution on all the random inputs u to the model generator.

From a computational perspective this may seem a potentially rash idea.
The dimensionality of the inputs u will typically be signi�cantly higher
than the dimensionality of the latent variables x. Trying to infer all of
u when we are only directly interested in the subset which are used to
generate z might appear as if it is increasing the dimensionality of the
inference problem for little gain. However as we saw in the previous
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chapter pseudo-marginal MCMC methods, which include the standard
ABC MCMC algorithm, can be considered as Metropolis–Hastings trans-
ition operator on an augmented state space including auxiliary random
inputs, in which updates to these auxiliary variables are proposed inde-
pendently of the previous values. Although independently proposing
updates to the auxiliary variables by drawing values directly from a ran-
dom number generator conceals their presence in the algorithm by not
requiring them to be explicitly enumerated, the succession of values
drawn still implicitly de�nes a Markov chain on these variables.

The approaches we propose in this chapter make the construction of a
chain on the joint space of all random inputs explicit. The explicit form
of the ABC posterior density on the generator inputs (4.23) allows the
application of a much greater range of MCMC methods to ABC inference
problems than the standard pseudo-marginal Metropolis–Hastings alg-
orithm. In particular it opens up the door to adaptive methods such as
slice sampling and gradient-based approaches such as HMC. As we saw
in the Lotka–Volterra experiments, in some cases by using these more
e�cient transition operators, we are able to tractably condition on all
observed data when performing inference in a simulator model when
standard ABC methods are only able to function at all when reducing
to summary statistics. The use of slice sampling methods within ABC

inference problems seems particularly promising, with the algorithms
having minimal or no free parameters to tune and requiring no model
gradients meaning there is a relatively low implementation overhead
required to apply them to existing models.

For the restricted class of di�erentiable generative models, the constrain-
ed HMC approach we propose in some cases allows asymptotically exact
inference where ABC methods might otherwise be used. The proposed
algorithm helps deal with two of the key issues in ABC methods — en-
abling inference in continuous spaces as ϵ collapses to zero and allow-
ing e�cient inference when conditioning on high-dimensional obser-
vations without the need for dimensionality reduction with summary
statistics (and the resulting task of choosing appropriate summary stat-
istics). As well as being of practical importance itself, this approach
should be useful in providing ‘ground truth’ inferences in more com-
plex models to assess the a�ect of the approximations used in ABC meth-
ods on the quality of the inferences. The application of constrained HMC

to a generator function outputting summary statistics in the Lotka–



220 implicit generative models

Volterra experiments was an interesting example of this: that the pos-
terior conditioning exactly on the summaries without use of an ABC

kernel would be nearly as informative about the parameters as condi-
tioning on all of the data was not obvious a-priori, and highlighted the
complex interaction between the use of summaries and the kernel and
tolerance choice in the resulting ABC posterior.

In molecular simulations, constrained dynamics are often used to im-
prove e�ciency. Intra-molecular motion is removed by �xing bond
lengths. This allows a larger time-step to be used due to the removal of
high-frequency bond oscillations [150]. An analogous e�ect is present
when performing inference in an ABC setting with a ϵ kernel ‘soft-
constraint’ to enforce consistency between the inputs and observed
outputs. As ϵ → 0 the scales over which the inputs density changes
value in directions orthogonal to the constraint manifold and along dir-
ections tangential to the manifold increasingly di�er. To stay within
the soft constraint a very small step-size needs to be used. Using a
constrained dynamic decouples the motion on the constraint manifold
from the steps to project on to it, allowing more e�cient larger steps
to be used for moving on the manifold. This was evident in the relative
performances of the constrained HMC and unconstrained HMC meth-
ods in the experiments in all three models, with the use of HMC in the
ABC posterior on the generator inputs typically limited in the e�ciency
achieved by the requirement to use a small integrator step size.

A strong limitation of the constrained HMC method is the requirement
of di�erentiability of the generator. This prevents using the approach
with generative models which use discontinuous operations or discrete
random inputs. In some cases conditioned on �xed values of discrete
random inputs the generator may still be di�erentiable and so the pro-
posed method can be used to update the continuous random inputs
given values of the discrete inputs. This would need to be alternated
with updates to the discrete inputs, which would require devising meth-
ods for updating the discrete inputs to the generator while constraining
its output to exactly match observations.

4.12 related work

Similar methods to those explored in this chapter have been proposed
by various authors. The pseudo-marginal HMC algorithm of [159] dis-
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cussed at the end of the last chapter is particularly closely related, us-
ing a HMC transition operator to jointly update the target and auxiliary
variables in pseudo-marginal settings, with the authors discussing the
relevance of their approach to an ABC setting. Their use of a symplectic
integrator that leverages additional structure in the models considered,
in particular a normal marginal distribution on the auxiliary variables,
contrasts to the more basic application of a standard HMC approach to
ABC inference problems here.

Hamiltonian ABC [170], also proposes applying HMC to perform infer-
ence in simulator models. Rather than using reverse-mode AD to exactly
calculate gradients of the generator function, Hamiltonian ABC uses a
stochastic gradient estimator. This is based on previous work consid-
ering methods for using a stochastic gradients within HMC [60, 260].
It has been suggested however that the use of stochastic gradients can
destroy the favourable properties of Hamiltonian dynamics which en-
able coherent exploration of high dimensional state spaces [31].

The authors ofHamiltonianABC also observe that representing the gen-
erative model as a deterministic function by �xing the random inputs
to the generator is a useful method for improving exploration of the
state space. This is achieved by including the state (∼ seed) of the PRNG

in the chain state however rather than directly updating the random
inputs. As pointed out by the authors, this formulation puts minimal
requirements on the model implementation with most numerical com-
puting libraries having some facility to control the internal state of the
PRNG being used, simplifying the application of the method with exist-
ing legacy code. In comparison the approaches we consider will often
require some re-implementation, at a minimum to explicitly enumerate
the random inputs used by the generator, and for methods requiring
derivatives potentially requiring re-coding in a framework supporting
reverse-mode AD. This additional implementation e�ort comes with an
associated gain however, with the ability to control the updates to all
the random inputs and to make perturbative moves rather than inde-
pendently resampling values, being central to the improved perform-
ance of the algorithms.

Also related is Optimisation Monte Carlo [171]. The authors propose
using an optimiser to �nd parameters of a simulator model consist-
ent with observed data (to within some tolerance ϵ) given �xed ran-
dom inputs sampled independently. The optimisation is not volume-
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preserving and so the Jacobian of the map is approximated with �-
nite di�erences to weight the samples. Our proposed constrained HMC

method also uses an optimiser to �nd inputs consistent with the ob-
servations, however by using a volume-preserving dynamic we avoid
having to re-weight samples.

Our method also di�ers in treating all inputs to a generator equival-
ently; while theOptimisationMonte Carlo authors similarly identify the
simulator models as deterministic functions they distinguish between
parameters and random inputs, optimising the �rst and independently
sampling the latter. This can lead to random inputs being sampled for
which no parameters can be found consistent with the observations
(even with a within ϵ constraint). Although optimisation failure is also
potentially an issue for our method, we found this occurred rarely in
practice if an appropriate step size is chosen. Our method can also be ap-
plied in cases were the number of unobserved variables is greater than
the number of observed variables unlikeOptimizationMonte Carlo.



5 C O N T I N U O U S T E M P E R I N G

In Chapter 2 we introduced simulated tempering [164] as an approach
for dealing with two key issues with MCMC methods: improving ex-
ploration of multimodal distributions and allowing estimation of the
normalising constant of the target distribution, which is often an im-
portant quantity for model comparison in Bayesian inference problems.
Simulated tempering augments the Markov chain state with a discrete
index variable controlling the inverse temperature of the system. As the
inverse temperature varies, the chain moves between exploring the typ-
ically complex target distribution at high inverse temperatures to per-
forming updates in a simpler unimodal base distribution at low inverse
temperatures. The increased ability of the chain to move to new regions
of the state space at low inverse temperatures helps improve the prob-
ability of the chain transitioning between separate modes in the target
distribution. Further by computing the ratio of time spent at high and
low inverse temperatures the normalising constant of the target distri-
bution can be estimated.

Although the improved exploration of the state space and ability to
estimate normalising constants o�ered by simulated tempering are im-
portant bene�ts, the algorithm can be challenging to use in practice
due to sensitivity of the performance of the method to the various free
parameters that need to be set. The schedule of inverse temperature val-
ues that the chain moves between must be selected, with the number of
inverse temperatures chosen and their distribution across the inverse
temperature range both important to getting the algorithm to perform
well. More �nely spaced inverse temperatures improve the ability of
the chain to explore the inverse temperature space but also increase
the computational demands of the method. The choice of transition op-
erator for the updates to the inverse temperature index variable is also
important, with random-walk updates tending to give a slow di�usive
exploration of the inverse temperature range which can be particularly
problematic when a large set of inverse temperatures is used.

223
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It is also necessary to choose an appropriate base distribution to bridge
to at low inverse temperatures, with this choice key in getting simulat-
ing tempering to perform well in high dimensional spaces. A base distri-
bution which poorly matches the target distribution makes it unlikely
the chain will mix between the low and high ends of the temperature
range. Further if the volume under the target distribution (correspond-
ing to the unknown normalising constant) di�ers signi�cantly from
that under the base distribution, the chain will tend to remain con�ned
to one end of the inverse temperature range. This is typically tackled by
putting prior weights on the di�erent inverse temperature index vari-
able values to attempt to �atten out the marginal distribution on the
inverse temperatures. As appropriate values for these weights will not
usually be known a-priori, generally an iterative approach is needed,
with the inverse temperature distribution of initial pilot chains used to
estimate the weights to use. If the mass at di�erent inverse temperat-
ures is very imbalanced, multiple iterations of running chains and then
readjusting the weights may be required.

In the chapter we propose approaches to overcoming some of these
computational issues with simulated tempering. We show how the dis-
crete index variable used to control the inverse temperature in simu-
lated tempering can be replaced with continuous control variable, elim-
inating the need to choose an appropriate number of inverse temper-
atures. Further the continuous nature of this auxiliary control variable
means that we can apply more e�cient transition operators when per-
forming updates to the variable in the chain, including importantly in
target distributions on real-valued variables allowing the control vari-
able to be jointly updated with the target model variables with e�cient
HMC transition operators. This allows the proposed approach to be eas-
ily applied in probabilistic programming frameworks such as Stan [55]
and PyMC3 [236] which use HMC based inference algorithms.

We also demonstrate that a principled and e�ective approach for choos-
ing appropriate base distributions for high dimensional target distri-
butions is to �t a simple approximation to the target distribution us-
ing variational inference methods. The lower bound to the target dis-
tribution normalising constant which is maximised by variational ap-
proaches can also be used to help �atten the marginal distribution on
the inverse temperatures, reducing the need for multiple iterations of
pilot chains to estimate weights to �atten out the inverse temperat-
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ure distribution. By using �exible parametric variational inference ap-
proaches such as automatic di�erentiation variational inference (ADVI)
[144], we can �t appropriate base distributions for high-dimensional
target distributions with minimal need for user intervention.

The work described in this chapter has previously appeared in the con-
ference publication

• Continuously tempered Hamiltonian Monte Carlo. Matthew M.
Graham and Amos J. Storkey. Proceedings of the 33rd Conference

on Uncertainty in Arti�cial Intelligence, 2017.

I was the primary author of that publication and responsible for the con-
tributions made in the paper, as well as performing and analysing the
numerical experiments described in the paper, which are reproduced
in this chapter in Section 5.6.

5.1 problem notation

As in the previous chapters, our goal is to be able estimate the integrals
on high-dimensional spaces which arise when performing inference in
probabilistic models. We assume in this chapter that the target distri-
bution of interest P , is speci�ed by an unnormalised density function
p̃ : X → [0,∞) de�ned on a real-valued space X = RD with respect to
the Lebesgue measure. We further assume that target distribution has
unbounded support on X - this is non-restrictive as distributions with
bounded support can typically be transformed to distributions with un-
bounded support using a suitable bijective map and the change of vari-
ables formula (1.19).

The unnormalised density function p̃ can be related to an energy func-
tion ϕ : X → R by ϕ (x ) = − log p̃ (x ) ∀x ∈ X . The normalising
constant Z of the target density is then de�ned as

Z =

∫

X

exp(−ϕ (x )) dx . (5.1)

In the chapter we will consider methods both for estimating expect-
ations with respect the target distribution and estimating the norm-
alising constant Z , which for target distributions corresponding to the
posterior distribution in a Bayesian inference problem, will correspond
to the model evidence term or marginal likelihood.
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Algorithm 13 Annealed importance sampling.
Input: ϕ : energy function corresponding to target distribution P , ψ : en-

ergy function corresponding to base distribution Q , {βk}Kk=0 : increasing
sequence of inverse temperatures satisfying (5.2), {⇀

Tk}K−1k=0 : set of transition
operators with Tk leaving the distribution with density π (x | βk ) invariant.

Output: (xK−1, `K−1) : importance sample and log importance weight.
1: x0 ∼ Q (·)
2: `0 ← β1 (ψ (x0) −ϕ (x0))
3: for k ∈ {1 . . .K − 1} do
4: xk ∼ Tk (· | xk−1)
5: `k ← `k−1 + (βk+1 − βk ) (ψ (xk ) −ϕ (xk ))
6: return (xK−1, `K−1)

We will brie�y reintroduce the notation and terminology we used to
describe simulated tempering in Section 2.3.3 in Chapter 2. An ordered
sequence of inverse temperatures

{
β
}K
k=0 are chosen such that

0 = β0 < β1 < β2 < · · · < βK−1 < βK = 1. (5.2)

A discrete auxiliary temperature index variable k ∈ {1 . . .K} is intro-
duce in addition to the vector of target variables x ∈ X . The joint dens-
ity on k and x is then de�ned as

px,k (x ,k ) =
1
C
exp(−βkϕ (x ) − (1 − βk )ψ (x ) + wk ). (5.3)

The values {wk}Kk=0 are the prior weights associated with each inverse
temperature value and ψ : X → R de�nes an energy function for
the base distribution Q with normalised density q(x ) = exp(−ψ (x ))
with respect to the Lebesgue measure on X . Simulated tempering then
constructs a Markov chain on X × {1 . . .K} which has the distribution
de�ned by the joint density (5.3) as its unique invariant distribution, by
alternating updates of the index variable k given the target variables
x and updates of the target variables x given the index variable k, as
described in Algorithm 7.

5.2 annealed importance sampling

An alternative approach to simulated tempering for using an ensemble
of distributions corresponding to di�erent inverse temperatures within
a Monte Carlo approximate inference method, is the annealed import-

ance sampling (AIS) algorithm proposed by Neal [189]. AIS is a popu-
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lar method in the machine learning literature for normalising constant
estimation, e.g. [233, 264]. We will brie�y review the basics of the al-
gorithm and some related methods, as we compare AIS to our proposed
approaches in the numerical experiments in Section 5.6.

As in simulated tempering, AIS speci�es a base distribution Q on the
target space X with a tractable normalised density q(x ) = exp(−ψ (x ))
and which we can tractably draw independent samples from. An in-
creasing sequence of inverse temperatures {βk}Kk=0 de�ned as in (5.2)
are chosen, and used to de�ne a series of distributions geometrically
bridging between the densities of the base and target distributions. The
distribution corresponding to an inverse temperature β is de�ned as
having density

π (x | β ) = 1
z (β )

exp(−βϕ (x ) − (1 − β )ψ (x )) (5.4)

with the inverse temperature dependent normaliser z (β ) being termed
the partition function and de�ned as

z (β ) =

∫

X

exp(−βϕ (x ) − (1 − β )ψ (x )) dx . (5.5)

A sequence of K − 1 Markov transition operators {⇀
Tk}K−1k=1 are de�ned,

with the k th transition operator leaving the distribution with density
π (x | βk ) invariant. If ⇀

t k is the transition density associated with the
transition operator ⇀

Tk then this means that

π (x ′ | βk ) =
∫

X

⇀
t k (x ′ | x ) π (x | βk ) dx ∀x ′ ∈ X . (5.6)

From our discussion of Markov transition operators in Chapter 2, we
know that an equivalent condition to (5.6) is that there exists a reverse
transition operator ↼

Tk with transition density ↼
t k that respects the gen-

eralised balance condition

⇀
t k (x ′ | x ) π (x | βk ) = ↼

t k (x | x ′) π (x ′ | βk ) ∀x ∈ X , x ′ ∈ X . (5.7)

AIS draws an initial state x0 from the base distribution Q and sequen-
tially applies the transition operators to generate a sequence of states,
for each k ∈ {1 . . .K − 1} generating a state xk by applying the trans-
ition operator ⇀

Tk to the previous state xk−1, i.e. xk ∼ ⇀
T (· | xk−1). The
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sequence of K generated states {xk}K−1k=0 forms a sample from a joint
distribution with normalised density

q̄(x0, x 1, . . . ,xK−1) = q(x0)
K−1∏

k=1

⇀
t k (xk | xk−1). (5.8)

We could also consider an analogous process which draws an initial
state xK from the target distribution P and then sequentially applies
the reverse transition operators, for each k ∈ {K − 1 . . . 1} generating a
statexk−1 by applying the reverse transition operator ↼

Tk to the statexk ,
i.e. xk−1 ∼ ↼

T (· | xk ). The sequence of states generated by this reverse
process would have a distribution with unnormalised density

p̄ (x0, x 1, . . . ,xK ) = p̃ (xK )
K∏

k=1

↼
t k (xk−1 | xk ), (5.9)

and a normalising constant equal toZ , i.e. equal that of the target distri-
bution. This reverse sequence will be in general intractable to generate
as we cannot draw independent samples from the target distribution.
However if we consider a state sequence {xk}K−1k=0 generated using the
forward process as a sample from an importance sampling proposal
distribution with density q̄ for the distribution de�ned by the reverse
process with density p̄, we have that the corresponding importance
weight formed by the ratio of these two densities is

⇀
w(x0, x 1, . . . ,xK−1) =

p̄ (x0, x 1, . . . ,xK−1)
q̄(x0, x 1, . . . ,xK−1)

(5.10)

=
p̃ (xK−1)
q(x0)

K−1∏

k=1

↼
t k (xk−1 | xk )
⇀
t k (xk | xk−1)

(5.11)

=
p̃ (xK−1)
q(x0)

K−1∏

k=1

π (xk−1 | βk )
π (xk | βk ) (5.12)

with the last line resulting from the condition that (5.7) holds.

We can evaluate the value of this importance weight as it only involves
functions we can compute (with the partition function terms z (βk ) in
the product of ratios cancelling). In particular using the de�nition (5.4)
in the log domain it can be shown to be equal to

log⇀
w(x0, x 1, . . . ,xK−1) =

K−1∑

k=0
(βk+1 − βk ) (ψ (xk ) −ϕ (xk )). (5.13)
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This can be sequentially computed during the forward generation pro-
cess by initialising `0 = (β1 − β0) (ψ (x0) −ϕ (x0)) and then for each k

calculating `k = `k−1 + (βk+1 − βk ) (ψ (xk ) −ϕ (xk )). The overall AIS al-
gorithm, including this sequential computation of the log importance
weight, is described in Algorithm 13.

By the same argument as given in the discussion of importance sampling
in Chapter 2, the importance weight is an unbiased estimate of the nor-
malising constant of p̄, i.e. Z . Further as xK−1 is marginally distributed
according to P under the distribution of the reverse process, the �nal
state xK−1 generated from the proposal distribution in the forward pro-
cess can be used as an importance sample for P . By performing multiple
independent runs of the AIS algorithm, we can generate a set of import-
ance samples and weights which we can both use to estimate expect-
ations with respect to the target distribution P and compute unbiased
estimates of the normalising constant Z .

We previously argued that importance sampling typically scales poorly
to high-dimensional target distributions as mismatch between the pro-
posal and target distributions means that few samples fall in to the tar-
get distribution typical set, leading to importance weights which vary
widely in magnitude and high variance estimates of both expectations
with respect to the target distribution and its normalising constant. The
AIS algorithm helps overcome these issues by using Markov transition
operators to de�ne a proposal distribution which, providing the num-
ber of inverse temperatures is high enough and the transition operators
mix well, should be a good match to the target.

In the case of K = 1 where we have just β0 = 0 and β1 = 1, the AIS

algorithm reverts to the standard importance algorithm described in
Chapter 2 using Q as the proposal distribution. For K > 1, the Markov
transition operators will perturb the initial samples from the base dis-
tribution towards regions of high probability under the target distri-
bution. As the number of inverse temperatures is increased, the di�er-
ence between invariant distributions of the transition operators cor-
responding to successive inverse temperatures will become smaller. If
the Markov transition operators explore the space well, then for small
changes in the inverse temperature the transition operators should be
able to keep the state close to equilibrium for the invariant distribution
for the current inverse temperature. In general as K → ∞ the �nal
importance sample will have a distribution increasingly close to the
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target distribution and the importance weights will give increasingly
low variance estimates of Z .

If we were able to generate samples from the reverse process described
to motivate the de�nition of the AIS extended target distribution, then
we could use this sampled state sequence to compute importance samp-
ling estimates with respect to the distribution de�ned by the forward
process with density p̄. The resulting inverted importance weight

↼
w(x0, x 1, . . . ,xK−1) =

q̄(x0, x 1, . . . ,xK−1)
p̄ (x0, x 1, . . . ,xK−1)

(5.14)

would then be an unbiased estimate of Z−1. The bidirectional Monte

Carlo (BDMC) algorithm of Grosse, Ghahramani and Adams [118] uses
this idea to de�ne a scheme for upper and lower bounding logZ . Due
to Jensen’s inequality an unbiased estimate of Z is a stochastic lower
bound on logZ and an unbiased estimate of Z−1 is a stochastic upper
bound on logZ , with the bounds becoming tighter on average as the
number of inverse temperaturesK used in the AIS runs is increased and
so the variance of the estimators decreased. If we run both standard ‘for-
ward’ AIS runs from base to target distributions, and also ‘reverse’ AIS

runs from target to base distributions we can therefore stochastically
upper and lower bound logZ , and by using long AIS runs with large K
we can make these bounds increasingly tight.

The key computational issue with this scheme is that generally comput-
ing an exact sample from the target distribution, as required to initialise
a reverse AIS run, will be infeasible. In [118] it is observed however, that
for directed generative models with observed variables y and latent
variables x, if a synthetic data set y is generated from Py |x conditioned
on latent variables z sampled from the prior distribution Px, then as
(x ,y) is an exact sample from the joint distribution Px,y, then x will be
an exact sample from the posterior distribution Px |y given the synthetic
data y. If we perform Bayesian inference experiments with synthetic
data we can therefore use this approach to estimate upper and lower
bounds on the model evidence term py (y). We use this BDMC approach
in one of the later experiments in Section 5.6 to bound the value of the
model evidence term for a synthetic image dataset under a generative
image model, using these bounds a substitute for the intractable ground
truth value to assess the quality of the estimates computed using our
proposed approach and the other methods we test.
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5.3 continuous temperature approaches

In both AIS and simulated tempering the choices of the number and spa-
cing of the discrete inverse temperature values are key to getting the
methods to perform well in complex high dimensional distributions [23,
30, 187]. To get reasonable performance it may be necessary to do pre-
liminary pilot runs to help identify the number of inverse temperatures
to use, adding to the computational and user e�ort burdens of using
these methods. It is natural therefore to consider whether it is possible
to use a continuously varying inverse temperature variable.

Path sampling [97] proposes this approach, speci�cally in the context of
estimation of normalising constants Z . A path is de�ned as a function
parametrised by a variable β ∈ [0, 1] which continuously maps between
the target density exp(−ϕ (x ))/Z and a base density exp(−ψ (x )), with
the geometric bridge in (5.4) a particular example, and the one that we
concentrate on here. The main proposal in [97] of direct relevance here
is the suggestion to construct a Markov chain which leaves invariant a
joint distribution on a state (x, β) with density

px,β (x , β ) ∝ exp(−βϕ (x ) − (1 − β )ψ (x )) ρ (β ). (5.15)

with ρ (β ) a prior density on the inverse temperature variable analog-
ous to the weights {wn}Nn=0 in simulated tempering. The authors of
[97] suggest that the ‘most natural approach’ to do this is to use Metro-
polis or Gibbs transition operator to alternate updates of β | x and x | β
as an obvious analogue to simulated tempering. In the numerical ex-
periments a random-walk Metropolis scheme is used to perform the
updates to β given x.

The authors of [97] suggest a method to use the samples of a chain
with an invariant distribution with density (5.15) to estimate logZ by
utilising the identity

logZ =
∫ 1

0

∫

X

px,β (x , β )
pβ (β )

(ψ (x ) −ϕ (x )) dx dβ . (5.16)

A hybrid numerical integration and Monte Carlo scheme that applies
the trapezium rule on a grid speci�ed by the sampled β values is sugges-
ted to approximate this integral. As the focus is normalising constant
estimation there is no discussion of how to use the sampled x states to
estimate expectations with respect to the target distribution.
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Adiabatic Monte Carlo [30] also proposes using a continuously varying
inverse temperature variable, here speci�cally in the context of HMC.
The original Hamiltonian system (x, p) is further augmented with a
continuous inverse temperature coordinate β ∈ [0, 1].

A contact Hamiltonian is de�ned on the augmented system,

hc (x , p, β ) = βϕ (x ) + (1 − β )ψ (x ) + 1
2p

TM−1p + log z (β ) +h0 (5.17)

this de�ning a corresponding contact Hamiltonian dynamic,

dx
dt =

∂hc
∂p

T

, dpdt =
∂hc
∂β

p − ∂hc
∂x

T

, dβdt = hc −
∂hc
∂p

p. (5.18)

The �ow map of this dynamic restricted to the zero level-set of the con-
tact Hamiltonian (which the initial state can always be arranged to lie
in by appropriately choosing the arbitrary constant h0) generates tra-
jectories which exactly conserve the contact Hamiltonian and extended
state space volume element, and correspond to the thermodynamical
concept of a reversible adiabatic process.

For a quadratic kinetic energy, dβ
dt is always non-positive and so for-

ward simulation of the contact Hamiltonian �ow generates non-increa-
sing trajectories in β (and backwards simulation generates non-decreas-
ing trajectories in β). In the ideal case this allows the inverse temper-
ature range [0, 1] to be coherently traversed without the random-walk
exploration inherent to simulated tempering.

Simulating the contact Hamiltonian �ow is non-trivial in practice how-
ever: the contact Hamiltonian (5.17) depends on the log partition func-
tion log z (β ), the partial derivatives of which require computing expect-
ations with respect to π (x | β ) which for most problems is intractable
to do exactly. Moreover the contact �ow can encounter meta-stabilities
whereby dβ

dt becomes zero and the �ow halts at an intermediate β mean-
ing the �ow no longer de�nes a bijection between β = 0 and β = 1. This
can be ameliorated by regular resampling of the momenta at a cost of
increasing the random-walk behaviour of the dynamic.

An alternative extended Hamiltonian approach for simulating a system
with a continuously varying inverse temperature was proposed in the
statistical physics literature [108]. The inverse temperature of the sys-
tem is indirectly set via an auxiliary variable, which we will term the
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temperature control variable u ∈ R. This control variable is mapped
to an interval [s , 1], 0 < s < 1 via a smooth piecewise de�ned func-
tion β : R → [s , 1], with the conditions that for a pair of thresholds
(θ1, θ2) with 0 < θ1 < θ2, β (u) = 1 ∀ |u | ≤ θ1, β (u) = s ∀ |u | ≥ θ2 and
s < β (u) < 1 ∀ θ1 < |u | < θ2.
Unlike Adiabatic Monte Carlo, an additional momentum variable v cor-
responding to u is also introduced. Although seemingly a minor di�er-
ence this simpli�es the implementation of the approach signi�cantly
as the system retains a symplectic structure and can continue to be
viewed within the usual Hamiltonian dynamics framework. An exten-

ded Hamiltonian is de�ned on the augmented system

h̃(x , u, p, v) = β (u)ϕ (x ) +ω (u) + 1
2p

TM−1p +
v
2

2m (5.19)

whereω is a ‘con�ning potential’ onu andm is the mass (marginal vari-
ance) associated with v. This extended Hamiltonian is separable with
respect to the extended con�guration (x, u) and extended momentum
(p, v) and so can be e�ciently simulated using a standard leapfrog in-
tegrator. In [108] the extended Hamiltonian dynamics are integrated
using a Langevin scheme without Metropolis adjustment and shown
to improve mixing in several molecular dynamics problems.

Due to the condition β (u) = 1 ∀ |u | < θ1, the set of sampled con�g-
uration states x which have associated |u| < θ1 will (assuming the dy-
namic is ergodic and Metropolis adjustment were used) asymptotically
converge in distribution to the target, and so can be used to estimate
expectations without any importance re-weighting. The β function is
required to be bounded below by a s > 0 in [108] due to the base density
being bridged to being an improper uniform density on X . The parti-
tion function z (β ) → ∞ as β → 0 in this case, which would imply an
in�nite density for regions in the extended state space where β (u) = 0.
Even with a non-zero lower bound on β , the large variations in z (β (u))

across di�erent u values can lead to the dynamic poorly exploring the
u dimension. In [108] this issue is tackled by introducing an adaptive
history-dependent biasing potential on u to try to achieve a �at density
across a bounded interval |u| < θ2, using for example metadynamics
[146]. The resulting non-Markovian updates bias the invariant distribu-
tion of the target state however this can be accounted for either by a
re-weighting scheme [46], or using a vanishing adaptation.
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Algorithm 14 Gibbs continuous tempering.
Input: (xn , βn ) : current target variables – inverse temperature state pair, ϕ :

energy function of target distribution, ψ : energy function of base distribu-
tion, ζ : target distribution normalising constant estimate, T : transition
operator updating only target variables x and leaving distribution with
density in (5.20) invariant.

Output: (xn+1, βn+1) : new target variables – inverse temperature state pair,
(w0,n+1,w1,n+1) : new importance weight pair.

1: xn+1 ∼ T(· | xn , βn ) . Update x given current β.
2: ∆ ← ϕ (x ) + log ζ −ψ (x ) . Calculate energy di�erence at new state.
3: u ∼ U ( |̇0, 1) . Independently sampled new β | x.
4: if ∆ < 0 then
5: βn+1 ← 1 + log(1−u+exp(−|∆ |)u )

|∆ |
6: else if ∆ = 0 then
7: βn+1 ← u
8: else
9: βn+1 ← − log(1−u+exp(−|∆ |)u )

|∆ |
10: w0,n+1 ← −∆

exp(−∆)−1 . Calculate target distribution importance weight.
11: w1,n+1 ← ∆

exp(∆)−1 . Calculate base distribution importance weight.
12: return (xn+1, βn+1), (w0,n+1,w1,n+1)

5.4 continuous tempering

We now describe our proposed continuous tempering approach. The
two methods we suggest combine aspects of several of the existing al-
gorithms we have reviewed, in particular we utilising ideas from Rao–

Blackwellised tempered sampling [53] described in Section 2.3.3 in Chap-
ter 2, path sampling [97] and the extended Hamiltonian approach of
[108]. One of the key motivations of our approaches is to minimise the
number of free parameters requiring tuning by the user as far as pos-
sible.

We de�ne a joint density on an augmented state consisting of the target
variable x ∈ X and an inverse temperature variable β ∈ [0, 1]

px,β (x , β ) =
1
C
exp(−βϕ (x ) − β log ζ − (1 − β )ψ (x )). (5.20)

As previously ϕ and ψ are the energy functions of the target and base
distributions. The term ζ sets a simple prior on the inverse temperature
variable and is intended to help balance the marginal densities pβ (0)
and pβ (1). It should ideally be set as close to Z as possible - we will
motivate this in the next section.
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Importantly the conditional density on β given x corresponding to this
joint density has a tractable normalised form

pβ |x (β | x ) = exp(−β∆(x ))∆(x )
1 − exp(−∆(x )) , (5.21)

with ∆(x ) = ϕ (x ) + log ζ −ψ (x ). For ∆(x ) > 0 this corresponds to an
exponential distribution with rate parameter ∆(x ) truncated to [0, 1].
We can e�ciently generate independent samples from this distribution
and so an obvious method of constructing a Markov chain on the joint
space is to alternate Gibbs sampling steps where new values for β are
independently sampled from the conditional distribution Pβ |x with up-
dates to the target variables x with the inverse temperature β �xed, for
example using a Hamiltonian Monte Carlo or slice sampling transition
operator. We term this approach Gibbs continuous tempering and de-
scribe the method, including an approach for generating independent
samples from the conditional distribution Pβ |x in Algorithm 14. We will
discuss the details and motivation for the additional values calculated
by the algorithm shortly.

Instead of alternating separate updates of the inverse temperature β

and target variables x, with a continuous inverse temperature it is nat-
ural to consider jointly updating x and β. In general it is easier to de�ne
transition operators on densities with unbounded support so we �rst
de�ne a reparameterisation of the joint target density (5.20) using a
temperature control variable u ∈ R related to β by a standard logistic
sigmoid transformation

β =
1

1 + exp(−u)
= σ (u) ⇐⇒ u = log β

1 − β . (5.22)

Under this bijective transformation we can use the change of variables
formula (1.22) to de�ne the joint density on u and x as

px,u (x ,u) = (5.23)
σ (u) (1 − σ (u))

C
exp(−σ (u) (ϕ (x ) + log ζ ) − (1 − σ (u))ψ (x )).

If the energy functions of the target and base distributions are di�er-
entiable, then this target density function is also di�erentiable with re-
spect to all inputs and has unbounded support on RD+1. In this case an
obvious choice of transition operator to use is a HMC approach.
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Algorithm 15 Continuously tempered Hamiltonian Monte Carlo.
Input: (xn ,un ) : current target variables – temperature control state pair,
ϕ : energy function of target distribution, ψ : energy function of base
distribution, ζ : target distribution normalising constant estimate,
Thmc : HMC transition operator as described in Algorithm 6 using Hamilto-
nian de�ned in (5.24).

Output: (xn+1,un+1) : new target variables – temperature control state pair,
(w0,n+1,w1,n+1) : new importance weight pair.

1: xn+1,un+1 ∼ Thmc (· | xn , un ) . Jointly update (x, β) using HMC.
2: ∆ ← ϕ (x ) + log ζ −ψ (x ) . Calculate energy di�erence at new state.
3: w0,n+1 ← −∆

exp(−∆)−1 . Calculate target distribution importance weight.
4: w1,n+1 ← ∆

exp(∆)−1 . Calculate base distribution importance weight.
5: return (xn+1, un+1), (w0,n+1,w1,n+1)

A Hamiltonian for the extended state (x, u) is constructed by augment-
ing with associated momenta variables (p, v) and then de�ning

h̃(x ,u,p, v) =σ (u) (ϕ (x ) + log ζ ) + (1 − σ (u))ψ (x )

− logσ (u) − log(1 − σ (u)) + 1
2p

TM−1p +
v
2

2m . (5.24)

As with the approach of [108], this Hamiltonian is separable and the
corresponding dynamic can be e�ciently simulated with a leapfrog in-
tegrator. The reversible and volume-preserving simulated dynamic can
then be used as a proposal generating mechanism on the joint space
(x, u, p, v) for a Metropolis–Hastings step as in standard HMC trans-
ition described in Algorithm 6. We term the approach of running HMC

in the extended joint space continuously tempered Hamiltonian Monte

Carlo. An outline of the method is given in Algorithm 15; as with the
previous Gibbs continuous tempering algorithm this contains steps for
calculation of additional values which we will motivate shortly.

Importantly we can also equally apply more e�cient adaptive HMC vari-
ants such as the NUTS algorithm [130] which dynamically set the num-
ber of integration steps. In particular we can easily de�ne models with
the augmented density (5.23) in probabilistic programming frameworks
such as Stan and PyMC3 and exploit their e�cient in-built NUTS based
inference algorithms and automatic di�erentiation capabilities.

We have so far neglected to discuss the key issue of how to use the
sampled continuous tempering chain states to compute the expecta-
tions with respect to the target distribution P of interest and its norm-
alising constant Z . As described in Chapter 2, in simulated tempering,
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typically expectations are estimated by computing averages over only
the chain states for which k = K corresponding to βK = 1, as at conver-
gence these states will be distributed according to the target distribu-
tion. Although simple to implement, we previously suggested that this
scheme is somewhat wasteful as it means only a small proportion of
generated states are used to compute estimates and this issue becomes
worse as the number of inverse temperatures is increased as fewer and
fewer states will corresponding to k = K .

As the inverse temperature β (or equivalently temperature control vari-
able u) is continuous in our case, there seems to potentially be even
more of a problem as the probability of chains generating states with
a corresponding β exactly equal to one will be zero: the regions of the
state space for which β = 1 is zero-measure under the joint distribution
Px,β. We could form an approximate scheme by using states with β val-
ues within some small tolerance of one (analogous to an ABC approach);
this would however introduce bias into the results which it would be
hard to characterise, and further would require tuning the choice of
tolerance. Further this method would still mean only a small subset of
the chains states are utilised to estimate expectations.

In the extended Hamiltonian approach of [108], this issue is overcome
by using a piecewise de�ned inverse temperature control function β (u)
which maps an interval [−θ1,θ1] of u values to a corresponding inverse
temperature value β (u) = 1. As the region of space with u ∈ [−θ1,θ1]
has a non-zero measure this means a non-zero number of sampled
states will at convergence correspond to samples from the target distri-
bution. Although an interesting approach, this method requires tuning
the choice of the width interval θ1 of u values mapping to β (u) = 1.
Additionally when the chain is at states with |u| ≤ θ1 and so the cor-
responding inverse temperature is β (u) = 1, the chain is e�ectively ex-
ploring the original target distribution, which if multimodal will mean
in these periods the chain will typically mix poorly. There is therefore
a tension between the requirement to keep θ1 small such that the chain
maximises the time spent at low and intermediate inverse temperat-
ures to allow for improved mixing, and the need for θ1 to not made too
small so that a reasonable number of sampled chain states can be used
to compute expectations with respect to the target distribution. How-
ever this tradeo� is balanced in practice, the basic scheme described
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will also mean that only a subset of the chain states will be used in
computing expectations.

In Chapter 2 we discussed simulated tempering in the broader context
of auxiliary variable methods where the target distribution corresponds
to a conditional distribution given a value or set of values of the auxil-
iary variables. We made the observation there that the standard estim-
ator used to compute expectation in these methods was closely related
to rejection sampling. We at that point suggested that alternative ap-
proaches could be considered which are instead based on importance
sampling. We use that intuition here to suggest an estimator for expect-
ations with respect to the target distribution using continuous temper-
ing chains. The key idea is to use the marginal distribution Px on the tar-
get variables under the joint density (5.20) as the proposal distribution
for an importance sampling estimator for expectations with respect to
the target distribution. As the generated target variable states of con-
tinuous tempering chains will be, at convergence, distributed accord-
ing to Px we can use (all) the sampled x values to estimate expectations
with respect to Px.

The target distribution P is equal to Px |β (· | 1) and so expectations with
respect to P correspond to

E[f (x) | β = 1] =
∫

X

f (x ) px |β (x | 1) dx . (5.25)

We can use an importance sampling approach to re-express this integ-
ral with respect to the conditional distribution Px |β as expectations with
respect to the marginal distribution Px, giving the following

E[f (x) | β = 1] =

∫
X
f (x )

px|β (x | 1)
px (x )

px (x ) dx
∫
X

px|β (x | 1)
px (x )

px (x ) dx
(5.26)

=

∫
X
f (x ) pβ |x (1 | x ) px (x ) dx∫
X

pβ |x (1 | x ) px (x ) dx
. (5.27)

As at convergence the x components of the chain states will be margin-
ally distributed according to px we can therefore construct consistent
estimators for (5.27) from the sampled target variable states {xn}Nn=1 of
a continuous tempering chain, by computing weighted averages

E[f (x) | β = 1] = lim
N→∞

∑N
n=1 (w1 (xn ) f (xn ))∑N

n=1 (w1 (xn ))
. (5.28)
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The importance weights take values according to pβ |x (5.21)

w1 (x ) = pβ |x (1 | x ) = ∆(x )

exp(∆(x )) − 1 . (5.29)

Intuitively this estimator (5.28) seems reasonable, more highly weight-
ing sampled target variables x for which pβx (1 | x ) is high. Importantly
unlike the standard rejection sampling type estimator it does not de-
pend on the actual sampled inverse temperature state values and can be
validly computed even if no sampled state pair ever has β = 1 which will
generally be the case for continuous tempering, and uses information
from all of the chain target variable states to compute estimates.

By an analogous construction, we can also estimate expectations with
respect to the base distributionQ , corresponding to Px |β (·|0) using

E[f (x) | β = 0] = lim
N→∞

∑N
n=1 (w0 (xn ) f (xn ))∑N

n=1 (w0 (xn ))
(5.30)

with the corresponding importance weights de�ned by

w0 (x ) = pβ |x (0 | x ) = ∆(x )

1 − exp(−∆(x )) . (5.31)

Typically the base distribution will have known moments (e.g. mean
and covariance of a Gaussian base distribution) which can be compared
to the estimates calculated using this estimator (5.30) to check for con-
vergence problems. Convergence of the estimates to the true moments
is not a su�cient condition for convergence of the chain to the distri-
bution de�ned by (5.20) but is necessary.

Although we can calculate the importance weights (5.29) and (5.31) in
a post-processing step after running the chain, the energy di�erence
terms ∆(x ) required to compute them will typically already be com-
puted as part of the chain state updates - for example ∆(x ) is computed
to independently generate a new β value from Pβ |x in Gibbs continuous
tempering, and for continuously tempered HMC the �nal Metropolis ac-
cept step will require calculating the Hamiltonian (5.24) at the new state
which involves evaluating ∆(x ). It will therefore generally be more ef-
�cient to compute these weights as part of each update; we show such
a scheme in Algorithms 14 and 15.
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We can also use the importance weights to construct an estimator for
the normalising constant Z of the target density. The inverse temper-
ature marginal density pβ corresponding to (5.20) is

pβ (β ) =
1

Cζ β

∫

X

exp(−βϕ (x ) − (1 − β )ψ (x )) dx = z (β )

Cζ β
. (5.32)

We therefore have that

pβ (0) =
1
C
, pβ (1) =

Z

Cζ
=⇒ Z =

pβ (1)
pβ (0)

ζ . (5.33)

We can use (5.21) to write the marginal density pβ

pβ (β ) =

∫

X

pβ |x (β | x ) px (x ) dx = E
[
pβ |x (β | x)

]
(5.34)

and so the marginal densities of β = 0 and β = 1 can be written

pβ (0) = E[w0 (x)] and pβ (1) = E[w1 (x)]. (5.35)

Therefore given target variable samples {xn}Nn=1 from a continuous
tempering chain we have the following consistent estimator forZ

Z =
E[w1 (x)]
E[w0 (x)]

ζ = lim
N→∞

∑N
n=1 (w1 (xn ))∑N
n=1 (w0 (xn ))

ζ , (5.36)

This can be seen to be a continuous analogue of the Rao-Blackwellised

estimator (2.74) proposed in [53] and discussed in Section 2.3.3.

5.5 choosing a base distribution

We now consider criteria for selecting an appropriate base distribution
Q to use with tempering methods. We claimed in the introduction that
the choice of base distribution was key to the performance of temper-
ing methods in complex high-dimensional targets, with the degree of
match between the base and target determining the ability of the chain
to mix between low and high inverse temperatures. In this section we
formalise this statement by deriving some basic properties of the logar-
ithm of the inverse temperature marginal density log pβ and its relation
to the Kullback–Leibler (KL) divergences betweenQ and P . We will then
use these properties to motivate speci�c computational schemes for �t-
ting a base distribution.
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Taking logarithms of (5.32) and recalling the previous de�nition of the
geometric bridge density π (x | β ) (5.4)

log pβ (β ) = log
∫

X

exp(−βϕ (x ) − (1 − β )ψ (x )) dx − logC − β log ζ

= log
∫

X

π (x | β ) dx − logC − β log ζ . (5.37)

We will �rst show that log pβ is convex. Di�erentiating (5.37) with re-
spect to the inverse temperature and using the earlier de�nition of the
partition function z (β ) (5.5) gives

∂ log pβ

∂β
=

∫

X

(ψ (x ) −ϕ (x ) − log ζ ) exp(−βϕ (x ) − (1 − β )ψ (x ))
z (β )

dx

=

∫

X

(ψ (x ) −ϕ (x ) − log ζ )π (x | β ) dx . (5.38)

Di�erentiating again then gives after some manipulation

∂2 log pβ

∂β2
=

∫

X

(ψ (x ) −ϕ (x ))2π (x | β ) dx−
(∫

X

(ψ (x ) −ϕ (x ))π (x | β ) dx
)2
.

(5.39)

As the square function is convex by Jensen’s inequality we have that

(∫

X

(ψ (x ) −ϕ (x ))π (x | β ) dx
)2
≤
∫

X

(ψ (x ) −ϕ (x ))2π (x | β ) dx .

Therefore ∂2 log pβ
∂β 2 ≥ 0 and so log pβ is convex.

We now show that gradients of log pβ at the end-points β = 0 and
β = 1 are related to the KL divergences between the base and target
distributions. We �rst recall the de�nition of the KL divergence between
two probability distributions P and Q on a space X with P absolutely
continuous with respect to Q as

DKL[P ‖Q ] =
∫

X

log
(
dP
dQ

)
dP , (5.40)

which is read as the KL divergence from P to Q . For distributions P and
Q on a real-valued space X = RD de�ned by densities p and q with
respect to the Lebesgue measure we further have that

DKL[P ‖Q ] = Dλ
KL[p ‖ q] =

∫

X

p (x ) log p (x )
q(x )

dx . (5.41)



242 continuous tempering

Considering �rst the value of ∂ log pβ
∂β at the upper end point β = 1

∂ log pβ

∂β
(1) =

∫

X

(ψ (x ) −ϕ (x ) − log ζ ) 1
Z
exp(−ϕ (x )) dx (5.42)

=

∫

X

(− logq(x ) + logp (x ) + logZ − log ζ )p (x ) dx (5.43)

=

∫

X

log p (x )
q(x )

p (x ) dx + logZ − log ζ (5.44)

= DKL[P ‖Q ] + logZ − log ζ . (5.45)

Equivalently for the lower end point β = 0

∂ log pβ

∂β
(0) =

∫

X

(ψ (x ) −ϕ (x ) − log ζ ) exp(−ψ (x )) dx (5.46)

=

∫

X

(− logq(x ) + logp (x ) + logZ − log ζ )q(x ) dx (5.47)

= −
∫

X

log q(x )
p (x )

q(x ) dx + logZ − log ζ (5.48)

= −DKL[Q ‖ P ] + logZ − log ζ . (5.49)

The convexity of the log marginal density means that gradients of log pβ
at the end-points give a lot of information about the shape of the log
marginal density. For the purposes of improving mixing of tempered
chains across the inverse temperature range, we ideally want the mar-
ginal density on the inverse temperatures pβ to be as �at as possible.
As log pβ is convex, if we set log ζ = logZ and chose a base distribu-
tion Q such that DKL[P ‖Q ] = DKL[Q ‖ P ] = 0 we would have log pβ is
constant and so the marginal density would be uniform across [0, 1]. Of
course in reality we do not know logZ and DKL[P ‖Q ] = DKL[Q ‖ P ] = 0
would only be satis�ed if we used the target distribution as the base
distribution, which would negate any bene�t from using a tempering
approach.

More practically we need to constrain Q to be in a family of distribu-
tions amenable to exploration, such that tempered chains gain from an
improved ability to move around the space when at low inverse temper-
atures. Under that constraint, we then ideally want the gradients of the
(logarithm of the) marginal density pβ to be as close to zero as possible
at β = 0 and β = 1 such that the marginal density is as �at as possible.
This suggests we want to minimise DKL[Q ‖ P ] or DKL[Q ‖ P ] or some
combination of thereof, subject to Q being in a ‘simple’ family.



5.5 choosing a base distribution 243

This is exactly the task considered by the variational inference methods
discussed in Appendix C. The standard variational inference approach
involves �tting an approximate distribution Q in a �xed family to a
target distribution P by minimising the evidence lower bound (ELBO)
variational objective logZ −DKL[Q ‖ P ] (so-called as in Bayesian infer-
ence problemsZ corresponds to the model evidence and DKL[Q ‖ P ] ≥ 0
therefore the ELBO lower bounds the evidence). If we were to �t a base
distribution Q in this manner and set log ζ to the �nal value of the (es-
timated) variational objective, the gradient of the log marginal density
at β = 0 should be close to zero.

In terms of the choice of variational inference approach, in some cases
we may be able to use variational methods speci�cally designed for the
target distribution family. More generally methods such as ADVI [144]
provide a black-box framework for �tting variational approximations
to di�erentiable target densities. In models such as VAE [139, 224] a para-
metric variational approximation to the target density of interest (e.g.
posterior on latent space) is �tted during training of the original model,
in which case it provides a natural choice for the base distribution as
observed in [264].

A potential problem with this approach is that the classes of target dis-
tribution that we are particularly interested in applying our approach
to — those with multiple isolated modes — are precisely the same distri-
butions that simple variational approximations will tend to �t poorly,
the divergence DKL[Q ‖ P ] being minimised favouring ‘mode-seeking’
solutions which usually �t only one mode well as illustrated in C.2 in
Appendix C. This both limits how small the divergence from the base
to target can be made, but also crucially is undesirable as we wish to
use the base distribution to move between modes in the target.

One option would be to instead to minimise the reversed KL diver-
gence DKL[P ‖Q ], this tending to produce ‘mode-covering’ solutions
that match global moments. Methods such as expectation propagation

(EP) [176] do allow moment-matching approximations to be found and
EP methods may be a good option in the cases were they are applic-
able to the distribution of interest . Another possibility would be to
use an alternative divergence in a variational framework that favours
mode-covering solutions, with methods using the χ -divergence [76]
and Rényi divergence [156] having been recently proposed in this con-
text and discussed in Section C.2 in Appendix C.
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A further alternative is to �t multiple local variational approximations
{qi (x )}Li=1 by minimising the ELBO variational objective from multiple
random parameter initialisations (discarding any duplicate solutions
as measured by some distance tolerance between the variational para-
meters), each approximating a single mode well. We can then combine
these local approximations into a global approximation q(x ), for ex-
ample using a mixture model

m(x ) = 1
ζ
∑L

i=1 (exp(`i )qi (x )), ζ =
∑L

i=1 exp(`i ), (5.50)

with `i the �nal variational objective value for qi . If the local approxim-
ations had non-overlapping support this would lead to a global approx-
imation which is guaranteed to be at least as close in KL divergence as
any of the local approximations and a log ζ which is at least as tight a
lower bound on logZ as any of the individual `i [267]. Often we may
wish to use local approximations with overlapping support (e.g. Gaus-
sian) where the guarantee does not apply. However for the cases of
target distributions with multiple isolated modes the ‘overlap’ (regions
with high density under multiple qi ) between local Gaussian approx-
imations to each mode will often be minimal and so the method is still
a useful heuristic. A mixture distribution is unlikely to itself be a good
choice of base distribution however, as it will tend to be multimodal. We
can therefore instead use a base distribution with moments matched to
the �tted mixture, e.g. q(x ) = N (x | µ,Σ ) with mean and covariance
matched to the mean and covariance of the mixturem(x ).

For complex target distributions typically even with a variational �t-
ting approach, the KL divergences between base and target distribu-
tions will remain relatively large. For approaches based on minimising
DKL[Q ‖ P ] and setting log ζ to the �nal variational objective, then as
log ζ will be a lower bound on logZ as a result of (5.33) in this case
we will have pβ (1) ≥ pβ (0) (this can also be seen from the convexity of
the log marginal density and that the log marginal density gradient at
β = 0 should be approximately zero), with the degree of discrepancy
depending on the divergence between the base and target distributions.
If the divergence remains large, in this case tempered chains will tend
to remain at inverse temperatures close to one, limiting the gain from
the temperature augmentation. Equally if an approach is used which
gives logZ < log ζ and so pβ (1) < pβ (0) then if the discrepancy is
large tempered chains will tend to remain con�ned to low inverse tem-
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peratures, and the variance of the estimator (5.28) will become high as
performance will be similar to using the base distribution Q directly in
a simple importance sampling estimator (without the bene�t of draw-
ing independent samples).

A natural approach to try to ameliorate these e�ects is to use an iterat-
ive method analogous to the approaches often used in simulated tem-

pering (ST) to choose the prior weights on the inverse temperatures [53,
103]. An initial Q and log ζ are chosen for example using a Gaussian
variational approximation to the target distribution as described above.
An initial pilot tempered chain is then run. The sampled states from
this chain can then be used to both compute an estimate for logZ using
(5.36) and updated estimates of the target density mean and covariance
using (5.28). A new Gaussian base distribution Q can then be speci�ed
with the updated mean and covariance estimates and log ζ chosen to
be the updated logZ estimate. Samples of the new joint density can
then be used to update log ζ andQ again and so on. Although this adds
signi�cantly to the computational and user e�ort burden, the use of an
initial variational approach can potentially reduce the amount of iter-
ation used signi�cantly compared to using a simple non-informative
base distribution such as the prior distribution of a posterior target dis-
tribution.

A di�culty presented by the use of a continuous inverse temperature
formulation is that it is not as trivial as the discrete case to attempt to
�atten out the overall marginal distribution on the inverse temperat-
ure by using estimates from an initial run of the relative probabilities
(densities) of intermediate β ∈ (0, 1) (with the log ζ value controlling
the relative densities of β = 1 and β = 0). While in the discrete case
the weights {wn}Nn=0 can be used to arbitrarily reweight the marginal
Pβ=βn , in the continuous case a suitably expressive parametric family
across the interval [0, 1] would need to be chosen for the prior dens-
ity. We do not investigate this issue further here but it could form an
important line of future developments of the algorithm.

5.6 numerical experiments

We now move on to discussing the results of three numerical exper-
iments comparing the proposed continuous tempering approaches to
simulated tempering and AIS.
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5.6.1 Boltzmann machine relaxations

In Chapter 1 we introduced Boltzmann machines as an example of a
undirected graphical model which often de�ne highly multimodal dis-
tributions on a binary vector state space which it can challenging to
sample from. It was shown in [266], that a Boltzmann machine distri-
bution (1.45) with weight parametersW ∈ RDB×DB and biases b ∈ RD

B

can be relaxed to a closely related distribution with density on a real
valued vector state x ∈ RD

px (x ) =
2DB exp

(
− 1

2x
Tx

)

(2π )D/2ZB exp
(
1
2 Tr(D)

)
DB∏

i=1

(
cosh

(
qT
ix +bi

))
, (5.51)

where
{
qT
i

}DB

i=1
are the DB rows of a DB ×D matrix Q such that QQT =

W +D, with D chosen such thatW +D is semi positive-de�nite. The
moments of this Boltzmann machine relaxation distribution are related
to the moments of the corresponding binary state-space Boltzmann dis-
tribution by

E[x] = QTE[s] and E
[
xxT

]
= QTE

[
ssT

]
Q + I. (5.52)

Derivations of these relationships and further details of the paramet-
erisation we use are shown in Appendix E.

The relaxation density (5.51) corresponds to a mixture of 2DB Gaussian
components, with frustrated, multimodal Boltzmann machine distribu-
tions on the discrete state space corresponding to highly multimodal
relaxation densities with large separations between the Gaussian com-
ponents. Importantly the relationships in (5.52) mean that the moments
of a relaxation distributions can be calculated from the moments of
the original discrete Boltzmann machine distribution, which for models
with a small number of binary units DB (30 in our experiments) can be
computed exactly by exhaustive iteration across the 2DB discrete states.
This allows ground truth moments to be calculated against which con-
vergence can be checked, making the Boltzmann machine relaxation
distribution a useful test case for evaluating the ability of the proposed
approaches to improve exploration of challenging multimodal distribu-
tions as claimed.

As a �rst experiment we therefore performed inference in relaxations
of a set of ten synthetic Boltzmann machine distributions. The paramet-
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Figure 5.1.: Two-dimensional projection of 10 000 independent samples from a
Gaussian mixture relaxation of a Boltzmann machine distribution.
The parametersW and b of the Boltzmann machine distribution
were generated as described in the main text, with here DB =

28 (rather than DB = 30 as in the experiments) as independent
sampling from larger systems exceeded the memory available on
the workstation used. The two components shown correspond to
the two eigenvectors of the generated basis R with the largest
corresponding eigenvalues.

ers of the Boltzmann machine distributions were randomly generated
so that the corresponding relaxations are highly multimodal and so
challenging to explore well. The weight parametersW were generated
using an eigendecomposition based method. A uniformly distributed
(with respect to the Haar measure) random orthogonal matrix R was
sampled. A vector of eigenvalues e was generated by sampling inde-
pendent zero-mean unit-variance normal variates ni ∼ N (·; 0, 1) ∀i ∈
{1, . . .DB} and then setting ei = s1 tanh(s2ni ) ∀i ∈ {1, . . .DB}, with
s1 = 6 and s2 = 2 in the experiments. This generates eigenvalues
concentrated near ±s1 with this empirically observed to lead to sys-
tems which tended to be highly multimodal. A symmetric matrix V =

R diag(e )RT was then computed and the weightsW set such thatWi ,j =

Vi ,j ∀i , j and Wi ,i = 0 ∀i . The biases b were generated using bi ∼
N

(
·; 0, 0.12

) ∀i . A 2D projection of samples from a generated distribu-
tion illustrating the resulting multimodality is shown in Figure 5.1. Run-
ning HMC directly in these target distributions performed very poorly
with the chains often getting stuck in one Gaussian component mode
over thousands of iterations.

A Gaussian base distribution and approximate normalising constant
ζ were �tted to each the 10 relaxation target densities by matching
moments to a mixture of variational Gaussian approximations (indi-
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vidually �tted using a mean-�eld approach based on the underlying
Boltzmann machine distribution) as described in Section 5.5. All meth-
ods used the same base distribution and ζ was used to set the prior on
the inverse temperatures in all methods (equivalent to wk = −βkζ in
the earlier description of ST).

For ST, a Rao Blackwellised estimate of the normalising constant Z was
used as described in [53] and an estimator equivalent to (5.28) used to
allow estimation of the moments from all of the samples rather than
just those for which k = K (with this estimator found to always give
better results than the standard ST estimator in these experiments). For
each of ST, Gibbs continuous tempering (CT) and AIS, for the updates to
the target variables x given a �xed inverse temperature (index in the
case of ST), a HMC transition operator was used with δt = 0.5, L = 20.
For ST the inverse temperature values used a sigmoidal spacing

β̃k =

(
1 + exp

(
−42k −K

K

))−1
∀k ∈ {0…K}, βk =

β̃k − β̃0
β̃K − β̃0

(5.53)

with K = 1000 used based on initial pilot runs, and independent multi-
nomial resampling from Pk |x for the updates to the temperature index.
For AIS separate runs with K = 1000, K = 5000 and K = 10000 inverse
temperature βk values were used to obtain estimates at di�erent run
times, using the same sigmoidal spacing (5.53) as for ST and the estim-
ate for each K based on N = 100 AIS independent runs to produce N

importance samples. For the continuously tempered Hamiltonian Monte

Carlo (CT-HMC) chains a HMC transition operator with δt = 0.5 and
L = 20 was used with the mass value for the temperature control vari-
able set tom = 1.

Plots showing the RMSE in estimates of logZ and the mean and covari-
ance of the relaxation distribution against computational run time for
di�erent sampling methods are shown in Figure 5.2. The RMSE values
are normalised by the residual errors of the corresponding estimated
moments used in the base density (and log ζ ) such that values below
unity indicate an improvement in accuracy over the variational approx-
imation. The curves shown are RMSEs averaged over 10 independent
chains (or set of runs for AIS) for each of the 10 generated parameter sets,
with the �lled regions indicating plus or minus three standard errors
of the mean. All methods used a shared Theano [248] implementation



5.6 numerical experiments 249

0.0 20.0 40.0 60.0 80.0

Time / s

10-2

10-1

10 0

10 1

10 2

R
el

at
iv

e 
R

M
SE

AIS

ST

Gibbs CT

CT HMC

(a) logZ

0.0 20.0 40.0 60.0 80.0

Time / s

10 -1

10 0

10 1

R
el

at
iv

e 
R

M
SE

AIS

ST

Gibbs CT

CT HMC

(b) E[x]

0.0 20.0 40.0 60.0 80.0

Time / s

10 -1

100

10 1

R
el

at
iv

e 
R

M
SE

AIS

ST

Gibbs CT

CT HMC

(c) E
[
xxT

]
− E[x]E[x]T

Figure 5.2.: RMSEs in empirical moments estimated from MCMC samples against
run time for various thermodynamic ensemble MCMC methods run
on Gaussian Boltzmann machine relaxation target distributions.
All RMSEs are relative to the RMSE of the corresponding approximate
moments calculated using the moment-matched variational mix-
tures, so values below 1 represent improvement on deterministic
approximation. For AIS points across time axis represent increasing
number of inverse temperatures: (1, 5, 10) × 103. For ST, Gibbs CT
and CT-HMC curves show RMSEs for expectations calculated with
increasing number of samples from chains. All curves / points show
mean across 10 runs for each of 10 generated parameter sets. Filled
regions / error bars show ±3 standard errors of mean.



250 continuous tempering

running on a Intel Core i5-2400 quad-core CPU for the HMC updates
and so run times are roughly comparable.

The two CT approaches, Gibbs CT and CT-HMC, both dominate in terms
of having lower average RMSE in all three moment estimates across all
run times, with CT-HMC showing slightly better performance on estim-
ates of logZ and E[x] than Gibbs CT. The tempering approaches seem
to outperform AIS here, possibly as the highly multimodal nature of the
target densities favours the ability of tempered dynamics to move the
inverse temperature both up and down and so in and out of modes in
the target density, unlike AIS where the �xed sequence of temperature
updates are more likely to end up with chains con�ned to a single mode
after the initial transitions for low βk .

5.6.2 Generative image models

For the next experiments, we compared the e�ciency of our CT-HMC

and Gibbs CT approaches to ST and AIS for marginal likelihood estim-
ation in decoder-based generative models for images. Use of AIS in
this context was recently proposed in [264]. Speci�cally we estimate
the joint marginal likelihood of 1000 generated binary images under
the Bernoulli decoder distribution of two importance weighted autoen-

coder (IWAE) [51] models. Each IWAE has one stochastic hidden layer
and a 50-dimensional latent space, with the two models trained on bin-
arised versions of the MNIST [148] and Omniglot [147] datasets using
the code at https://github.com/yburda/iwae. The generated images
used are shown in Figure 5.3.

By performing inference on the per-image posterior densities on the
latent representation given image, the joint marginal likelihood of the
images can be estimated as the product of estimates of the normalising
constants of the individual latent posterior densities. The use of gener-
ated images allows BDMC [118] to be used to stochastically bound the
marginal likelihood as described in Section 5.2 with stochastic upper
and lower bounds formed with long forward and backward AIS runs
(averages over 16 independent runs with 10 000 inverse temperatures
as used in [264]).

As the per-image latent representations are conditionally independent
given the images, chains on all the posterior densities can be run in
parallel, with the experiments in this section run on a NVIDIA Tesla

https://github.com/yburda/iwae
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(a) Generated MNIST test images.

(b) Generated Omniglot test images.

Figure 5.3.: Generated image datasets from IWAE models that were used as the
observed data for marginal likelihood estimates.
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K40 GPU to exploit this inherent parallelism. The encoder of the trained
IWAE models is an inference network which outputs the mean and di-
agonal covariance of a Gaussian variational approximation to the pos-
terior density on the latent representation given an image and so was
used to de�ne per-image Gaussian base densities as suggested in [264].
Similarly the per-image log ζ values were set using variational lower
bound estimates for the per-image marginal likelihoods.

The results are shown in Figure 5.4, with the curves / points showing
average results across 10 independent runs and �lled regions / bars
±3 standard error of means for the estimates. Here Gibbs CT and AIS

perform similarly, with CT-HMC converging less quickly and simulated
tempering signi�cantly less e�cient. The quick convergence of AIS and
Gibbs CT here suggests the posterior densities are relatively easy for the
dynamics to explore and well matched by the Gaussian base densities,
limiting the gains from any more coherent exploration of the exten-
ded space by the CT-HMC updates. The higher per-leapfrog-step costs
of the HMC updates in the extended space therefore mean the CT-HMC

approach is less e�cient overall here. The poorer performance of simu-
lated tempering here is in part due to the generation of the discrete ran-
dom indices becoming a bottleneck in the GPU implementation.

A possible partial reason for the better relative performance of AIS here
compared to the experiments in Section 5.6.1 is its more e�ective utilisa-
tion of the parallel compute cores available when running for example
on a GPU. Multiple AIS chains can be run for each data point and then
the resulting unbiased estimates for each data points marginal likeli-
hood averaged (reducing the per data point variance) before taking
their product for the joint marginal likelihood estimate. While it is also
possible to run multiple tempered chains per data point and similarly
combine the estimates, empirically we found that greater gains in es-
timation accuracy came from running a single longer chain rather than
multiple shorter chains of total length equivalent to the longer chain.
This can be explained by the initial warm-up transients of each shorter
chain having a greater biasing e�ect on the overall estimate compared
to running longer chains. Therefore an increase in the number of par-
allel compute cores available seems to give greater gains for AIS versus
the tempering methods.



5.6 numerical experiments 253

0 50 100 150 200 250 300 350 400
Time / s

-95700

-95650

-95600

-95550

-95500

-95450

-95400

-95350

-95300

L
og

 m
ar

gi
na

l l
ik

el
ih

oo
d 

es
tim

at
e

ST

Gibbs CT

CT HMC

AIS

BDMC upper

BDMC lower

(a) MNIST log marginal likelihood estimates.
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(b) Omniglot log marginal likelihood estimates.

Figure 5.4.: Estimates of the log joint marginal likelihood of 1000 generated im-
ages under the Bernoulli decoder distributions of two IWAE models
trained on the MNIST and Omniglot datasets against computation
time. The black / red dashed lines show stochastic upper / lower
bounds calculated using long BDMC runs. For AIS points across
time axis represent increasing number of inverse temperatures:
(50, 100, 200, 500, 1000, 2000). For ST, Gibbs CT and joint CT curves
show estimates calculated with an increasing number of samples
from chains. All curves / points show mean across 10 runs. Filled
regions / error bars show ±3 standard errors of mean.
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Figure 5.5.: Radon hierarchical regression model.
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Figure 5.6.: Log marginal likelihood estimates against run time for hierarchical
regression model. Black dashed line shows estimated log marginal
likelihood from a long AIS run which is used as a proxy ground
truth. The noisy blue curve shows the evidence lower bound ADVI
objective over training and the red dot-dashed line the �nal con-
verged value used for log ζ . The green curve shows log marginal
likelihood estimates using samples from NUTS chains running on
the extended joint density in the estimator (5.36), with the run
time corresponding to increasing samples being included in the
estimator (o�set by initial ADVI run time). Curve shows mean over
10 runs and �lled region ±3 standard errors of mean.
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5.6.3 Hierarchical regression model

As a �nal experiment, we apply our CT-HMC approach to perform in-
ference in a hierarchical regression model for predicting indoor radon
measurements [96]. To illustrate the ease of integrating our approach in
existing HMC-based inference software, this experiment was performed
with the Python package PyMC3 [236], with its ADVI feature used to �t
the base density and its implementation of the adaptive NUTS [130] HMC

variant used to sample from the extended space.

The regression target in the dataset is measurements of the amount of
radon gas y(i ) in N = 919 households. Two continuous regressors x (i )

and one categorical regressor c (i ) are provided per household. A mul-
tilevel regression model de�ned by the factor graph in 5.5 was used.
The model includes �ve scalar parameters (σa, µa, σb, µb, ϵ), an 85-
dimensional intercept vector a and a two-dimensional regressor coe�-
cients vector b, giving 92 parameters in total. As an example task, we
consider inferring the model evidence (marginal likelihood) of the data
under the model.

As our ‘ground truth’ we use a large batch of long AIS runs (average
across 100 runs of 10000 inverse temperatures) on a separate Theano
implementation of the model. We use ADVI to �t a diagonal covariance
Gaussian variational approximation to the target density and use this
as the base density. NUTS chains, initialised at samples from the base
density, were then run on the extended space for 2500 iterations. The
samples from these chain were used to compute estimates of the nor-
malising constant (marginal likelihood) using the estimator (5.36). The
results are shown in Figure 5.6. It can be seen that estimates from the
NUTS chains in the extended continuously tempered space quickly con-
verge to a marginal likelihood estimate very close to the AIS estimate,
and signi�cantly improve over the �nal lower bound on the marginal
likelihood that ADVI converges to.

5.7 discussion

The continuous tempering approaches we have proposed in this chapter
are a simple but powerful extension to existing simulated tempering
methods which can both help exploration of distributions with multiple
modes and allow estimation of the normalisation constant of the target
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distribution. We propose an importance sampling based method for us-
ing all of a tempered chain’s samples to estimate expectations with re-
spect to the target distribution, overcoming the waste in the standard
simulated tempering estimator which computes estimates using only a
subset of the sampled states. This importance sampling estimator also
allows use of a continuous inverse temperature formulation that re-
moves the need to choose a set of inverse temperatures values.

Related importance sampling estimators have been proposed before in
the context of tempering methods. Most relevant is the previously dis-
cussed Rao–Blackwellized tempered sampling [53], which uses an estim-
ator directly analagous to that in (5.28) within a standard (discrete in-
verse temperature) simulated tempering scheme. The method in [53] is
only discussed in the context of normalising constant estimation (with
the direct continuous tempering analogue being (5.36)) however apply-
ing the same approach to estimation of expectations with respect to the
target distribution was an obvious extension.

Importance tempering [114] also proposes use of an importance weight-
ing scheme within a simulated tempering framework to allow using all
the sampled chain states to estimate expectations with respect to the
target distribution. Unlike the estimator used here, the estimator pro-
posed in [114] uses importance weights which depend on the sampled
inverse temperature indices k as well as the sampled target states x. The
sampled states {xs , ks}Ss=1 are used to de�ne a set of K per inverse tem-
perature consistent estimators {f̂k ,S}Kk=1 for expectations of functions
f with respect to the target distribution P with

f̂k =
∑S

s=1 wk (xs , ks ) f (xs )∑S
s=1 wk (xs , ks )

, wk (x ,k ′) =
px,k (x , 1)
px,k (x ,k ′)

1{k} (k
′). (5.54)

These individual estimators can then be combined in to an overall con-
sistent estimator using a convex combination

f̂it =
K∑

k=1
λk f̂k ,S with

K∑

k=1
λk = 1. (5.55)

The authors of [114] propose setting the free weighting parameters
{λk}Kk=0 using an estimate of the optimal weights in the sense of maxim-
ising the e�ective sample size of the overall estimator. This estimator is
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compared to what is termed in [114] as a ‘naive’ estimator with weights
λk ∝ ∑S

s=1 wk (xs ,k ), which corresponds to an overall estimator

f̂naive =
∑S

s=1 wnaive (xs , ks ) f (xs ))∑S
s=1 wnaive (xs , ks )

, wnaive (x ,k ) =
pk |x (1|x )
pk |x (k | x ) . (5.56)

In contrast the discrete inverse temperature analogue of the estimator
we propose here in (5.28) has the form

f̂dt =
∑S

s=1 wdt (xs ) f (xs ))∑S
s=1 wdt (xs )

, wdt (x ) = pk |x (1|x ) (5.57)

The weights in the naive estimator can be seen to have an additional
division by a term depending on the sampled inverse temperature in-
dex. This introduces extra noise compared to the estimator in (5.57)
which e�ectively analytically integrates out this inverse temperature
dependence resulting in a lower variance estimator. Therefore though
the ‘optimal’ weighting scheme proposed in [114] is demonstrated to
give lower variance estimates compared to the naive estimator, it is
not clear if the scheme o�ers an advantage over the form of estimator
we propose here. Further as the estimator in [114] is reliant on binning
the sampled states based on the discrete inverse temperature, it is non-
trivial to extend to a continuous inverse temperature setting.

A key advantage of the proposed CT-HMC method is its ease of im-
plementation - it simply requires running HMC in an extended state
space and so can easily be used for example within existing probab-
ilistic programming software such as PyMC3 [236] and Stan [55] as
seen in the last experiment in Section 5.6. By updating the temperat-
ure jointly with the target state, it is also possible to leverage adaptive
HMC variants such as NUTS [130] to perform tempering in a ‘black-box’
manner without a need to separately tune the updates of the inverse
temperature variable.

The Gibbs CT method also provides a relatively black-box framework
for tempering. Compared to ST it removes the need to choose the num-
ber and spacing of discrete inverse temperatures and also replaces gen-
eration of a discrete random variate from a categorical distribution
when updating β given x (which as seen in Section 5.6.2 can become
a computational bottleneck) with generation of a truncated exponen-
tial variate (which can be performed e�ciently by inverse transform
sampling). Compared to the CT-HMC approach, the Gibbs approach is
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less simple to integrate in to existing HMC code due to the separate β

updates, but eliminates the need to tune the temperature control mass
valuem and achieved similar or better sampling e�ciency in the exper-
iments in Section 5.6.

In models we considered in experiments, the sampling e�ciency using
the proposed continuous tempering approaches was always as good
or better than simulated tempering. The comparison with AIS was less
clear cut with the continuous tempering approaches outperforming AIS

in the Boltzmann machine relaxation experiments but AIS generally do-
ing better in the generative image model experiments (though Gibbs
CT was competitive). The tempering approaches and AIS are less dir-
ectly comparable due to the di�erent basic inference approach being
used to compute expectations — importance sampling with independ-
ent proposals — versus the Markov chain approaches of the tempering
methods. This for example gave di�erent tradeo�s in the utilisation of
parallel compute, with it generally simpler to e�ciently exploit more
parallelism in AIS. Our proposed use of an importance sampling estim-
ator with samples generated using a Markov chain does bear some in-
teresting similarities with AIS, however the approaches remain quite
di�erent, with AIS using a Markov chain to construct each independ-
ent proposal rather than to sample from the proposal distribution, and
the AIS normalising constant estimate is unbiased unlike the consistent
estimator of our approach.

Our proposal to use variational approximations to select the base distri-
bution helps improve the ability to scale tempering methods to complex
high-dimensional target distributions were simple uninformative base
distributions can lead to poor performance. Approaches such as ADVI

[144] can be applied to a wide range of models with di�erentiable dens-
ities with minimal need for user input and e�cient implementations
are available in frameworks such as Stan and PyMC3.

Our use of variational inference within an MCMC framework can be
viewed within the context of several existing approaches which sug-
gest combining variational and MCMC inference methods. Variational
MCMC [71] proposes using a variational approximation as the basis for
a proposal distribution in a Metropolis-Hastings MCMC method. MCMC

and Variational Inference: Bridging the Gap [234] includes parametrised
MCMC transitions within a (stochastic) variational approximation and
optimises the variational bound over these (and a base distribution’s)
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parameters. Here we exploit cheap but biased variational approxima-
tions to a target distribution and its normalising constant, and use them
within an MCMC method which gives asymptotically exact results to
help improve sampling e�ciency.
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6 S U M M A R Y

This thesis has been concerned with the development of methods for
performing inference in complex probabilistic models and in particu-
lar the associated key computational challenge of approximating high-
dimensional integrals. In particular we have contributed several novel
Markov chain Monte Carlo approaches based on the introduction of
auxiliary variables in to the chain state.

In Chapter 1 we introduced the probabilistic modelling theory and tools
which we used to describe the models and methods discussed in the rest
of the thesis, and concluded with a discussion of some classes of prob-
abilistic models with key challenging features for existing inference
methods: hierarchical latent variable models with both global latent
variables a�ecting all observations and local per data point variables;
simulator models which are de�ned by a generative process for produ-
cing samples from the model rather than by an explicit density func-
tion on model variables; and undirected models such as Boltzmann ma-
chines which tend to produce highly multimodal distributions.

Chapter 2 reviewed some the key existing approximate inference ap-
proaches for estimating high-dimensional integrals. After introducing
the basic Monte Carlo integration method, we discussed some simple
approaches for generating and using samples to approximate integrals
and identi�ed that the complexities of the geometry of distributions
on high-dimensional spaces typically mean such methods are typically
limited to only very small models or as building blocks within more
e�cient algorithms. We then introduced the main class of methods we
focused on in the thesis - Markov chain Monte Carlo methods, and mo-
tivated the ability of this approach to provide a scalable, general pur-
pose framework for approximating integrals with respect to probability
distributions on high-dimensional spaces. The chapter concluded with
a discussion of auxiliary variable approaches to constructing e�cient
Markov chains, and we described three instantiations of this idea - slice
sampling, Hamiltonian Monte Carlo, with these methods underlying
much of work discussed in the remainder of the thesis.
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In Chapter 3 we introduced the pseudo-marginal method for construct-
ing Markov chains using noisy unbiased estimators of the target dens-
ity of interest. We concentrated in particular on the application of these
approaches to inferring the posterior distribution on global variables
in hierarchical latent variable models. Markov chains produced using
standard pseudo-marginal methods are susceptible to getting stuck at
points in the state space of many iterations and are di�cult to tune
using standard heuristics. By considering a reparameterisation of the
density estimator as a deterministic function of the auxiliary random
inputs used to compute the estimate, we proposed a auxiliary pseudo-

marginal framework which applies separate updates to the auxiliary
random inputs used in the estimator and the original target variables.

The simplest instantiation of this framework just corresponds to split-
ting the standard pseudo-marginal update in to two separate Metropolis–
Hastings accept steps, but even this minor change is able to produce
chains which are signi�cantly easier to tune and in some cases give im-
proved sampling e�ciency. The auxiliary pseudo-marginal framework
proposed also allows the use of alternative transition operators such
as slice sampling algorithms, which as we demonstrated empirically
are signi�cantly less sensitive to the choices made for their free para-
meters than random-walk Metropolis methods. Although we found the
slice sampling approaches proposed were generally less e�cient than
optimally tune random-walk Metropolis updates, we argue that extra
robustness provided by the adaptivity of the slice sampling algorithm
and minimal need for user tuning may often be more important be-
ne�ts. Our emphasis was on empirical evaluation of the methods we
proposed and a possible useful direction for future work would be to
try to put the methods on a more �rm theoretical footing, for example
characterising when the proposed ‘split’ auxiliary pseudo-marginal up-
date would be expected to give improved performance over the stand-
ard pseudo-marginal Metropolis–Hastings update and when it would
be expected to be less bene�cial.

In Chapter 4 we considered methods for performing inference in gen-
erative models where we can generate samples from the model but the
density on the model variables is only implicitly de�ned. We demon-
strated that a general framework for describing generative models is as
a deterministic mapping from a vector of random inputs drawn from a
known distribution, and de�ned a restricted class of di�erentiable gener-
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ative models where the generator function which transforms inputs to
simulated outputs is di�erentiable. Using this formulation of a generat-
ive model we showed how the approximate Bayesian computation (ABC)
approach for inference in the parameter space of implicit generative
models could be reposed in the input space to the generator. Similarly
to the methods proposed in Chapter 3, this reparameterisation enables
the application of more e�cient MCMC transition operators such as slice
sampling and Hamiltonian Monte Carlo to ABC inference problems. As
we demonstrated empirically, in some cases the resulting methods are
able to support inference when conditioning on the full set of observed
data when standard ABC approaches are forced to used reduced dimen-
sionality summary statistics.

For di�erentiable generative models we showed that computing expect-
ations conditioned on observed values of the output of the generator
corresponded to integrating against a distribution de�ned by an im-
plicitly de�ned manifold in the generator input space. Based on this
insight, we proposed a novel constrained Hamiltonian Monte Carlo
method for performing inference in di�erentiable generative models
while conditioning the model outputs to be arbitrarily close to observed
values. This o�ers an asymptotically exact alternative to ABC in some
models and, as we demonstrated empirically, the method can provide
improved sampling e�ciency over competing approaches by better ex-
ploiting the geometric structure of the problem, while also preserving
more information about the variables being inferred.

We found that application of the standard HMC algorithm to inference
in the input space of a generator based on conditioning with via a
Gaussian ABC kernel did not perform particularly well, with the result-
ing simulated dynamics showing highly oscillatory behaviour which
limited coherent exploration of the target distribution. A potential res-
olution to this issue would be to instead use a Riemannian-manifold
Hamiltonian dynamic, using a metric exploiting the tangent space struc-
ture de�ned by the generator Jacobian. Although the requirement to
use an implicit solver in the integrator in this case would increase the
computational cost per update, it would interesting to see if as with
the more costly constrained HMC dynamic considered here, whether
any resulting improved exploration of the space was able to outweigh
the higher computational costs.
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An assumption of di�erentiability of the generative model is restrictive,
with many of the models ABC approaches are commonly applied to in-
volving discrete latent variables or having generators with branching
control �ow logic that introduce discontinuities. It would be interest-
ing to consider if the general approach of parameterising a generative
model as a deterministic map can also be utilised in these setting to
suggest more e�cient inference methods. From a software engineer-
ing perspective, it would also be useful to develop approaches for auto-
mating the tracking of calls to a pseudo-random number generator in
simulator code, to allow for models to be more easily parameterised in
a form suitable for the inference approaches we suggest.

In Chapter 5 we introduced a novel tempering method which intro-
duces an auxiliary inverse temperature variable in to the state of a Mark-
ov chain to improve the exploration of challenging multimodal distri-
butions and allow for normalising constants to be estimated. Unlike ex-
isting simulated tempering methods, the approach we proposed uses
a continuous temperature. This reduces the tuning burden on users
by eliminating the need to choose a set of of inverse temperature val-
ues. Further using a continuous formulation allows the inverse tem-
perature variable to be jointly updated with the original variables in a
chain, making it simple to apply e�cient gradient based Hamiltonian
Monte Carlo transition operators to the augmented space. We also pro-
posed a novel importance sampling inspired approach for using all of
the sampled states of a tempered chain to estimate expectations with
respect to the target distribution, this making more e�ective usage of
the computation performed than the standard estimator used in sim-
ulated tempering which computes averages over only a small subset
of sampled states. We also demonstrated that variational inference is
a natural approach for �tting the base distribution bridged to by the
tempered dynamic, with the use of more informative base distributions
key to scaling tempering approaches to large-scale problems by helping
to �atten the marginal density on the inverse temperature.

In practice in complex target distributions even when using a base dis-
tribution �t using a variational approach, the tempered dynamic will
still typically struggle to move up and down the inverse temperature
range. We brie�y outlined the basics of an iterative approach for try-
ing to exploit information from initial pilot chains to improve mixing in
subsequent chains by iteratively improving the �t of the base distribu-
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tion and making use of improved estimates of the normalising constant.
Ideally this would be done in an online manner to prevent the need to
do multiple distinct runs, however maintaining reversibility in such a
scheme would challenging. It may be fruitful to consider however if
adaptive MCMC approaches could be employed in this setting.

We employed a standard HMC transition operator when performing
joint updates on the extended space. The distribution on the extended
space has a rich geometric structure with for example the smoothness
of the distribution typically increasing in regions corresponding to low
inverse temperatures. It may be possible to exploit this structure to con-
struct more e�cient HMC updates in the extended space, for example
using a mass metric which depends on the current inverse temperature
value within a Riemannian-manifold HMC framework.
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Name Parameters Shorthand Density Support

Bernoulli π ∈ [0, 1] Ber(x | π ) πx (1 − π ) (1−x ) x ∈ {0, 1}
Categorical π ∈ SK Cat(x | π ) ∑K

k=1
(
1{k} (x )πk

)
x ∈ {1 . . .K}

Table A.1.: De�nitions of densities of parameteric distributions for discrete random variables used in this thesis.

Name Parameters Shorthand Density

Normal µ ∈ R : mean
σ > 0 : standard deviation

N
(
x | µ,σ 2

)
1√
2πσ exp

(
− (x−µ )2

2σ 2

)

Multivariate normal µ ∈ RD : mean vector
Σ ∈ SD++ : covariance matrix

N (x | µ,Σ ) 1√
(2π)D |Σ |

exp
(
− 1

2 (x − µ)TΣ−1 (x − µ)
)

Logistic µ ∈ R : location
σ > 0 : scale

Logistic(x | µ,σ ) 1
4σ cosh

( x−µ
2σ

)−2

Inverse cosh µ ∈ R : location
σ > 0 : scale

InvCosh(x | µ,σ ) 1
2σ cosh

(
π(x−µ )
2σ

)−1

Table A.2.: De�nitions of densities of parameteric distributions for unbounded real random variables used in this thesis.
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Name Parameters Shorthand Density Support

Log-normal µ ∈ R : log mean
σ > 0 : log standard deviation

LogNorm(x | µ,σ 2) 1
x
√
2πσ exp

(
− (log x−µ )2

2σ 2

)
x > 0

Multivariate log-normal µ ∈ RD : log mean
Σ ∈ SD++ : log covariance

LogNorm(x | µ,Σ ) exp(− 1
2 (logx−µ )TΣ−1 (logx−µ ))∏D
d=1 (xd )

√
(2π)D |Σ |

x ∈ [0,∞)D

Exponential λ > 0 : rate Exp(x | λ) λ exp(−λx ) x ≥ 0

Uniform a ∈ R : minimum
b ∈ R : maximum, b > a

U (x | a,b) 1
b−a 1[a,b ] (x ) a ≤ x ≤ b

Half-Cauchy γ > 0 : scale C≥0 (x | γ ) 2
πγ

(
1 + x 2

γ 2

)−1
x ≥ 0

Table A.3.: De�nitions of densities of parameteric distributions for bounded real random variables used in this thesis.
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B C O M P U TAT I O N G R A P H S

In Chapter 1 we introduced graphical models as a compact way of rep-
resenting the structure in probabilistic models. Directed factor graphs
in particular o�er a natural approach for representing generative mod-
els. A directed graph can be used to specify a generative process via an-
cestral sampling, with values for the variables in the graph successively
calculated in a forward pass consisting of a combination of determin-
istic operations, represented by deterministic factors, and stochastic
sampling operations, represented by probabilistic factors.

Computation graphs [16] are a directed graph based representation of
the operations involved in evaluating a mathematical expression. Simil-
arly to a directed factor graph, a computation graph can be considered
as specifying a generative process - generation of the expression out-
puts given inputs - computed via forward pass through the graph. The
main di�erence of a forward pass through a computation graph com-
pared to an ancestral sampling pass through a directed factor graph is
that the inputs to a computation graph are assumed to be given rather
than sampled from marginal densities and the intermediate operations
are all deterministic. In this appendix we brie�y review the key con-
cepts of computation graphs and in particular their application to per-
form automatic di�erentiation.

Here we will distinguish between two types of nodes in a computa-
tion graph. Variable nodes correspond to variables which hold either
inputs to the computation or intermediate results corresponding to the
outputs of sub-expressions. Operation nodes describe how non-input
variable nodes are computed as functions of other variable nodes. In
other presentations of computation graphs often the operation nodes
are instead implicitly represented by directed edges between variable
nodes. However analogously to the more explicit factorisation a�orded
by directed factor graphs compared to directed graphical models, dir-
ectly representing operations as nodes allows �ner grained information
about the decomposition of the operations associated with a computa-
tion graph to be included.
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Figure B.1.: Example computation graph corresponding to calculation of the
negative log density of a univariate normal distribution.

The direct overlap in our notation to represent variable and operation
nodes in computation graphs and that used to represent (random) vari-
able nodes and deterministic factor nodes in factor graphs is intentional.
Although often the operations associated with a deterministic node in
a factor graph will be more complex than the operations usually rep-
resented by nodes in a computation graph, this is only a matter of gran-
ularity of representations - fundamentally they perform the same role.
Importantly this means we can treat subgraphs of a factor graphs con-
sisting of only variable and deterministic factor nodes as computation
graphs and if the operations performed by the deterministic nodes are
di�erentiable, use reverse-mode automatic di�erentiation to e�ciently
propagate derivatives through these sub-graphs.

As with directed factor graphs, computation graphs cannot contain dir-
ected cycles. This does not preclude recursive and recurrent compu-
tations however as these can always be unrolled to form a directed
acyclic graph. The ‘mathematical expressions’ a computation graph
is constructed to evaluate can be arbitrarily complex - a computation
graph corresponding to the evaluation of any numerical algorithm can
always be constructed including use of arbitrary nested �ow control
and branching statements.

An example of a computation graph representing the calculation of the
negative log density of a univariate normal distribution, i.e.

c =
1
2

(x −m
s

)2
+ log s +

1
2 log(2π) (B.1)

is shown in Figure B.1. The graph inputs have chosen to be the value
of the random variable (x) to evaluate the density at and the mean (m)
and the standard deviation (s) parameters of the density.
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Variable nodes in the computation graph have been represented by la-
belled circles and operation nodes with labelled diamonds. Undirected
edges connecting from a variable node to an operation node correspond
to the inputs to the operation, and directed edges from an operation
node to variable nodes to the outputs of the operation.

The computation graph associated with an expression is not uniquely
de�ned. There will usually be multiple possible orderings in which op-
erations can be applied to achieve the same result (up to di�erences
due to non-exact �oating point computation). Similarly what should
be considered a single operation to be represented by a node in the
computation graph as opposed to being split up into a sub-graph of
multiple operations is a matter of choice. For example in Figure B.1 the
addition of the constant 1

2 log(2π) could have been included at various
other points in the graph and the operation 1

2z2 could have been split
in to separate multiplication and exponentiation operations.

b.1 automatic differentiation

The main motivation for representing an expression as a computation
graph is to formalise an e�cient general procedure termed automatic
di�erentiation for automatically calculating derivatives of the output
of an expression with respect to its inputs [21, 196]. The key ideas in
automatic di�erentiation are to use the chain rule to decompose the
derivatives into products and sums of the partial derivatives of the out-
put of each individual operation in the expression with respect to its
input, and to use an e�cient recursive accumulation of these partial
derivative sum-products corresponding to a traversal of the computa-
tion graph such that multiple derivatives can be e�ciently calculated
together.

Depending on how the computation graph is traversed to accumulate
the derivative terms, di�erent modes of automatic di�erentiation are
possible. Of most use in this thesis will be reverse-mode accumulation

[242], in which the derivatives of an output node with respect to all in-
put nodes are accumulated by a reverse pass through the computation
graph from the output node to inputs.

As an example the partial derivatives of the expression for univariate
normal log density given in (B.1) with respect to x, m and s can be
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ū

∂u
∂s =

1
s

∂z
∂y = 1

∂z
∂s = −

y
s2

ā
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Figure B.2.: Visualisation of applying reverse-mode automatic di�erentiation
to the computation graph in Figure B.1 to calculate the derivatives
of the negative log density of a univariate normal distribution.

decomposed using the chain rule in terms of the intermediate variables
in the computation graph shown in Figure B.1 as

∂c
∂x
=
∂c
∂a
∂a
∂z
∂z
∂y
∂y
∂x

, (B.2)

∂c
∂m
=
∂c
∂a
∂a
∂z
∂z
∂y
∂y
∂m

, (B.3)

∂c
∂s
=
∂c
∂a
∂a
∂z
∂z
∂s
+
∂c
∂b
∂b
∂u
∂u
∂s

. (B.4)

We can immediately see that some of the chains of products of par-
tial derivatives are repeated in the di�erent derivative expressions -
for example ∂c

∂a
∂a
∂z appears in the expressions for all three derivatives.

Reverse-mode accumulation is e�ectively an automatic way of exploit-
ing these possibilities for reusing calculations.

Figure B.2 shows a visualisation of reverse-mode accumulation applied
to the computation graph in Figure B.1. The �rst step is for a forward

pass through the graph to be performed, i.e. values are provided for
each of the input variables and then each of the intermediate and out-
put variables calculated from the incoming operation applied to their
parent values. Importantly the values of all variables in the graph cal-
culated during the forward pass must be maintained in memory.

The reverse pass recursively calculates the values of the partial derivat-
ives of the relevant output node with respect to each variable node in
the graph - we will term these intermediate derivatives accumulators
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Algorithm 16 Reverse-mode automatic di�erentiation.
Input: {xi}Mi=1 : computation graph input variables,

Pa : indices of parent variables to an operation given its index,
Ch : indices to child operations of a variable given its index,
{fi}Ni=M+1 : computation graph operations in topological order,{
{∂j fi}j ∈Pa(i )

}N
i=M+1

: operation partial derivatives WRT parent variables.
Output: xN : function output,

{x̄i}Mi=1 : partial derivatives of function output WRT input variables.
1: for i ∈ {M + 1 . . .N} do . Forward pass
2: xi ← fi

(
{x j}j ∈Pa(i )

)

3: x̄N ← 1 . Reverse pass
4: for i ∈ {N − 1 . . . 1} do
5: x̄i ← ∑

j ∈Ch(i ) x̄ j∂i fj (xi )

6: return xN , {x̄i}Mi=1

denoted with barred symbols in Figure B.2 e.g. ā = ∂c
∂a . The reverse

pass begins by seeding an accumulator for the output node to one (i.e.
c̄ = ∂c

∂c = 1 in Figure B.2).

Accumulators for the input variables of an operation are calculated by
multiplying the accumulator for the operation output by the partial de-
rivatives of the operation output with respect to each input variable.
For non-linear operations multiplying by the operator partial derivat-
ives will require access to the value of the input variables calculated in
the forward pass. If a variable is an input to multiple operations, the de-
rivative terms from each operation are added together in the relevant
accumulator, as for example shown for s̄ in Figure B.2. By recursively
applying these product and sum operations, the derivatives of the out-
put with respect to all variables in the graph can be calculated. A gen-
eral description of the method for computation graphs with a single
output node and multiple inputs is given in Algorithm 16.

This reverse accumulation method allows computation of numerically
exact (up to �oating point error) derivatives of a single output variable
in a computation graph with respect to all input variables with a compu-
tational cost, in terms of the number of atomic operations which need
to be performed, that is a constant factor of the cost of the evaluation
of the original expression represented by the computation graph in the
forward pass. The constant factor is typically two to three and at most
six [17]. This e�cient computational cost is balanced by the require-
ment that the values of all intermediate variables in the computation
graph evaluated in the forward pass through the graph must be stored
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in memory for the derivative accumulation in a reverse pass, which for
large computational graphs can become a bottleneck.

To calculate the full Jacobian from a computation graph representing
a function with M inputs {xi}Mi=1 and N outputs {

yi
}N
i=1, i.e. the N ×M

matrix J with entries Ji ,j = ∂yi
∂xj

, we can do a single forward pass and
N reverse passes each time accumulating the derivatives of one output
variable with respect to all inputs. This leads to an overall computa-
tional cost that is O (N ) times the cost of a single (forward) function
evaluation to evaluate the full Jacobian. As each of the reverse passes
can trivially be run in parallel (in addition to any parallelisation of the
operations in the forward and reverse passes themselves), this O (N )

factor in the operation count need not corresponds to an equivalent
increase in compute time.

An alternative to reverse-mode accumulation is forward-mode accumu-

lation [261], which insteads accumulates partial derivatives with re-
spect to a single input variable alongside the forward pass through the
graph. In contrast to reverse-mode, this allows calculation of the partial
derivatives of all output variables with respect to a single input variable
at a computational cost that is a constant factor of the cost of the eval-
uation of the original expression in the forward pass. Forward-mode
accumulation therefore allows evaluation of the Jacobian of a function
with M inputs and N outputs at an overall computational cost that is
O (M ) times the cost of a single function evaluation.

For functions with M � N , e.g. scalar valued functions of multiple
inputs, reverse-mode accumulation is generally therefore signi�cantly
more e�cient at computing the Jacobian. Forward-mode accumulation
is however useful for evaluating the Jacobian of functions with N � M ,
and also has the advantage over reverse-mode accumulation of avoid-
ing the requirement to store the values of intermediate variables from
the forward pass for the reverse pass(es).



C O P T I M I S AT I O N - B A S E D

A P P R O X I M AT E I N F E R E N C E

The sampling-based approaches to approximate inference discussed in
Chapter 2 although a signi�cant improvement in terms of computa-
tional complexity over quadrature methods can still be computationally
demanding. In particular the MCMC methods which were identi�ed as
most suitable for inference in large, complex probabilistic models, will
involve a minimum of one evaluation of the target distribution density
per generated MCMC sample if using for example a simple random-walk
Metropolis method and potentially tens or hundreds of density evalu-
ation per sample if using more complex schemes such as slice sampling
or the Hamiltonian Monte Carlo. Typically chains need to be run on the
order of 102 to 104 iterations to ensure adequate converge of to the tar-
get distribution and to give a su�cient number of e�ective samples to
get reasonable estimates of the expectations of interest, with generally
running multiple chains preferred to give additional robustness and to
allow convergence diagnostics.

In large complex models each target density evaluation may be com-
putationally expensive. In particular when performing inference con-
ditioned on large sets of observed data the target density typically fac-
torise into a product (or sum in log space) of per datapoint factors. This
means the cost of each target density evaluation scales with the number
of datapoints and so can become appreciable for large datasets. Along-
side the increase in computational demands for large (in the sense of
number of datapoints) datasets, for common forms of probabilistic mod-
els such as observed variables which are independently and identically

distributed (IID) given a set of �xed dimension unobserved variables
(parameters), local asymptotic normality results means that the tar-
get (posterior) distribution is increasingly well approximated by a mul-
tivariate normal distribution as the number of observed data points
increases.

In this appendix we review an alternative class of approximate infer-
ence methods which tradeo� a generally lower computational cost than
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MCMC approaches for a loss of the ability to represent integrals across
complex distributions with arbitrary accuracy and so asymptotic exact-
ness guarantees. The central idea of these methods is to try to �nd a
normalised probability density q(x ) from a ‘simple’ family that in some
sense approximates the target density, i.e. p (x ) ≈ q(x ). Depending on
the family chosen for q, integrals of some functions f against the tar-
get density p, can be approximated by analytic solutions to integrals
of f against q e.g. if q(x ) = N (x | µ,Σ ) then we can approximate the
mean of the target density as µ and the covariance as Σ . To compute
integrals of more general functions f we typically still need to resort to
using a Monte Carlo approach; generally it is possible to directly gen-
erate independent samples from q however while usually this is not be
the case for p hence this two-step approach still o�ers (computational)
advantages over directly applying a Monte Carlo approach. Often the
approaches we discuss also allow estimation of the normalising con-
stant Z which may be needed for model comparison.

c.1 laplace’s method

For target densitiesp de�ned with respect to aD-dimensional Lebesgue
measure λD , a simple approach for computing a multivariate normal
approximation q to p is Laplace’s method. Although not always strictly
required, in general the method will work better for target densities
with unbounded support, and more generally for targets which are as
‘close to normal’ as possible. Therefore a useful initial step will often
be to apply a change of variables to the target density, such that the
density on the transformed space has unbounded support, for example
working with the density on the logarithm of a random variable with
support only on positive values.

The key idea in Laplace’s method is to form a truncated Taylor series ap-
proximation to the logarithm of the unnormalised target density

log p̃ (x ) ≈ log p̃ (x∗) +д(x∗)T (x − x∗)
+
1
2 (x − x

∗)TH (x∗) (x − x∗),
(C.1)

where the gradient andHessian of log p̃ are de�ned respectively as

д(x ) =
∂ log p̃ (x )
∂x

T

and H (x ) =
∂2 log p̃ (x )
∂x∂xT . (C.2)
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Figure C.1.: Univariate example of Laplace’s method. Left axis shows the logar-
ithm of the unnormalised target density log p̃ (x ) (green curve)
and the corresponding quadratic Taylor series approximation
log p̃ (x∗) + h

2 (x − x∗)2 (dashed orange curve) around the maxima
x∗ with h = (∂2 log p̃/∂x 2) |x ∗ . The right axis shows the correspond-
ing normalised target density p (x ) (green curve) and approximate
density q(x ) = N

(
x | x∗,−h−1

)
(dashed orange curve).

If the point x∗ the expansion is formed around is chosen to be a (local) A matrixM ∈ RD×D
is positive semi
de�nite, denoted
M � 0, i� xTMx ≥ 0
∀x ∈ RD

and

positive de�nite,
denotedM � 0, if the
inequality is made

strict. Corresponding

de�nitions for a

negative semi
de�nite matrices,

M � 0, and negative
de�nite matrices,

M ≺ 0, are formed by

reversing the sign of

the inequality.

maxima of log p̃, which necessarily means that the gradient is zero,
д(x∗) = 0, and the Hessian is negative de�nite, H (x∗) ≺ 0, then

log p̃ (x ) ≈ log p̃ (x∗) + 1
2 (x − x

∗)TH (x∗) (x − x∗). (C.3)

Taking the exponential of both sides we therefore have that

p̃ (x ) ≈ p̃ (x∗) exp
(
− 12 (x − x

∗)T (−H (x∗)) (x − x∗)
)
. (C.4)

This has the form of an unnormalised multivariate normal density with
mean x∗ and inverse covariance (precision) −H (x∗).

This suggests setting the approximate density q to a multivariate nor-
mal density N (x | x∗,C ) with C = −H (x∗)−1, i.e.

q(x ) =
1

(2π) D2 |C | 12
exp

(
− 12 (x − x

∗)TC−1 (x − x∗)
)
. (C.5)

An example of applying Laplace’s method to �t a normal approxima-
tion to a univariate generalised logistic target is shown in Figure C.1.

As q(x∗) ≈ p (x∗) = p̃ (x∗)/Z we can also form an approximation Z̃ to
the normalising constant Z for the target density

Z ≈ Z̃ = (2π)
D
2 |C | 12 p̃ (x∗). (C.6)
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To use Laplace’s method we need to be able to �nd a maxima of log p̃
and evaluate the Hessian at this point. For simple unimodal target dens-
ities it may be possible to �nd the maxima and corresponding Hes-
sian analytically. More generally if the gradient of log p̃ can be calcu-
lated (using for example reverse-mode automatic di�erentiation), then
a maxima can be found by performing iterative gradient ascent. The
Hessian can then be evaluated at this point using analytic expressions
for the second partial derivatives or again by using automatic di�eren-
tiation (by computing the Jacobian of the gradient of log p̃).

Though relatively simple to calculate, Laplace’s method will often res-
ult in an approximate density which �ts poorly to the target. As it only
uses local information about the curvature of the (log) target density
at the mode, away from the mode the approximate density can behave
very di�erently from the target density, for instance observe the poor
�t to the tails of the target of the example shown in Figure C.1. For
multimodal densities, several di�erent Laplace approximations can be
calculated, each likely to at best capture a single mode well. For target
densities which are well approximated by a normal distribution, for in-
stance due to asymptotic convergence to normality of a posterior for
IID data, Laplace’s method can give reasonable results however.

c.2 variational methods

Laplace’s method is limited by using information about the target dens-
ity evaluated at only one point to �t the approximation. An alternative
approach is to instead try to �t the approximate density based on min-
imising a global measure of ‘goodness of �t’ to the target; this is the
strategy employed in variational inference.

The naming of variational inference arises from its roots in the calculus
of variations, which is concerned with functionals (loosely a function of
a function, often de�ned by a de�nite integral) and their derivatives. In
particular it is natural to de�ne the measure of the ‘goodness of �t’ of
the approximate density to the target as a functional of the approximate
density. The value of this functional is then minimised with respect to
the approximate density function.

The most common functional used to de�ne goodness of �t in vari-
ational inference is the KL divergence [145]. The KL divergence in its
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most general form is de�ned for a pair of probability measures P andQ
on a space X with P absolutely continuous with respect to Q as

DKL[P ‖Q ] =
∫

X

log
(
dP
dQ

)
dP , (C.7)

which is read as the KL divergence from P to Q . The KL divergence is
always non-negative DKL[P ‖Q ] ≥ 0, with equality if and only if P = Q
almost everywhere. Intuitively the KL divergence gives a measure of
how ‘close’ two measures are1, however it is not a true distance as it is
asymmetric: in general DKL[P ‖Q ] , DKL[Q ‖ P ].

Generally we will work with probability densities rather than underly-
ing probability measures. If p and q are the densities of two probability
measures P andQ de�ned with respect to the same base measure µ on a
space X , i.e. p = dP

dµ and q = dQ
dµ , then we will denote the KL divergence

from P toQ in terms of the densities p and q by D
µ
KL[p ‖ q] = DKL[P ‖Q ],

and from the de�nition (C.7) we have that

D
µ
KL[p ‖ q] =

∫

X

p (x ) log p (x )
q(x )

dµ (x ), (C.8)

with absolute continuity of P with respect to Q corresponding to a re-
quirement that p (x ) = 0 ∀x ∈ X : q(x ) = 0. Somewhat loosely, we
will refer to D

µ
KL[p ‖ q] as the KL divergence from the (density) p to the

(density) q rather than referring to the underlying measures.

When used without further quali�cation, variational inference is gener-
ally intended to mean inference performed by minimising a variational
objective corresponding to the KL divergence from an approximate dens-
ity q to the target density p. More speci�cally using the decomposition
of the target density into an unnormalised density p̃ and normalising
constant Z we have that

L[q] = logZ −Dµ
KL[q ‖ p] =

∫

X

q(x ) log p̃ (x )
q(x )

dµ (x ), (C.9)

with L[q] the speci�c objective usually maximised in variational infer-
ence problems, with all terms in the integrand being evaluable point-
wise. As logZ is constant with respect to the approximate density, max-
imising L with respect to q is equivalent to minimising D

µ
KL[q ‖ p]. Due

1 From an information theory perspective DKL[P ‖Q ] is typically termed the relative

entropy of P with respect to Q and measures the expected information loss (in nats for
base-e logarithms or bits for base-2 logarithms) of using Q to model samples from P .
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to the non-negativity of the KL divergence we have that the following
inequality holds

L[q] ≤ logZ . (C.10)

When the target density p corresponds to a posterior px |y on latent
variables x given observed variables y and p̃ the corresponding joint
density px,y, the normalising constant Z is equal to the model evidence
term px in Bayes’ theorem. As L is a lower bound on logZ and so the
(log) model evidence, the variational objective L is therefore sometimes
termed the ELBO in this context.

Using the KL divergence from the approximate to target density as the
variational objective is not the only choice available. One obvious al-
ternative is the reversed form of the KL divergence, Dµ

KL[p ‖ q] from the
target density to the approximate density. In general as this form of
the divergence involves evaluating an integral with respect to the tar-
get density, precisely the intractable computational task we are hoping
to �nd an approximate solution, direct applications of this approach
are limited to toy problems were this integral can be solved exactly or
e�ciently approximated.

An approach called EP [176] however locally optimises an objective
closely related to D

µ
KL[p ‖ q]. EP is generally applied to target distribu-

tions with a density which factorise in to a product of (often per data-
point) factors

p̃ (x ) =
∏

i ∈I
p̃i (x ). (C.11)

An approximate density is de�ned with an equivalent factorisation

q(x ) =
∏

i ∈I
qi (x ), (C.12)

with each qi factor restricted to be the density of an exponential family
distribution. EP then �ts the individual approximate factors by iterat-
ively for each j ∈ I minimising

min
qj

D
µ
KL

[
p̃j (x )

∏

i ∈I\{j}
qi (x )





qj (x )
∏

i ∈I\{j}
qi (x )

]
. (C.13)

This is similar to minimising the KL divergence from the individual tar-
get factor p̃j to the corresponding approximate factorqj , i.e.Dµ

KL[p̃j ‖ qj ],
but (C.13) instead weights the integral by the density of the ‘cavity dis-
tribution’ formed by current approximation of the product of the re-
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maining target factors. Ideally as training proceeds the cavity distribu-
tion becomes an increasingly good approximation to the product of the
true remaining factors and so EP locally minimises an objective increas-
ingly close to D

µ
KL[p ‖ q]. The additional context provided by weighting

by the cavity distribution density favours approximate factorsqj which
�t well to the true factor p̃j where the mass of the current global approx-
imation is concentrated. This is usually a signi�cant improvement over
simply �tting eachqj individually by minimisingDµ

KL[p̃j ‖ qj ]which will
often �t a very poor global approximation.

The KL divergence can be considered as a special case of a broader class
of α-divergences. In particular the Rényi divergence [85, 223] of order
α > 0,α , 1 between two probability measures P and Q with probabil-
ity densities p = dP

dµ and q = dQ
dµ on a space X is de�ned as

Dα [P ‖Q ] = D
µ
α [p ‖ q] =

1
α − 1 log

(∫

X

p (x )α q(x )1−α dµ (x )
)
. (C.14)

For α > 0, Dα [P ‖Q ] is a valid divergence, that is Dα [P ‖Q ] ≥ 0 with
equality if and only if P = Q almost everywhere. The de�nition can
also be extended to the cases α = 1 and α = 0 by considering limits of
(C.14). Using L’Hôpital’s rule it can be shown that limα→1Dα [P ‖Q ] =
DKL[P ‖Q ]. For α → 0, we have that Dα [P ‖Q ] → − log P (supp(Q ))

where supp(Q ) represents the support of the probability measure Q ;
in this case Dα [P ‖Q ] is no longer a valid divergence as it is equal to
zero whenever supp(P ) = supp(Q ). It can also be shown that for α <
{0, 1} that Dα [P ‖Q ] = α

1−αD1−α [Q ‖ P ]. This motivates extending the
de�nition in (C.14) for α < 0, in which case we have that Dα [P ‖Q ] =
α
1−αD1−α [Q ‖ P ] ≤ 0 [156].

Analogously to using the decomposition of the target density p in to
an unnormalised density p̃ and unknown normaliser Z when de�ning
the previous variational objective in (C.9), it is observed in [156] that a
variational Rényi bound, Lα , can be de�ned as

Lα [q] = logZ −Dµ
α [q ‖ p] =

1
1 − α log

∫

X

q(x )

(
p̃ (x )

q(x )

) 1−α
dµ (x ). (C.15)

For α > 0, we have that Dµ
α [q ‖ p] ≥ 0 and so Lα is a lower bound on

the logZ , analogously to the ELBO, and we should maximise Lα with
respect to q to minimise D

µ
α [q ‖ p]. For α < 0 we have instead that

D
µ
α [q ‖ p] ≤ 0 and so Lα is an upper bound on logZ and that we should
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Figure C.2.: Comparison of approximate densities �tted under di�erent vari-
ational objectives. Each plot shows a bimodal target density p (x )

and a normal approximate density q(x ) = N
(
x | µ,σ 2

)
where µ

and σ have been set to values which minimise the variational
objective shown in the caption.

minimise Lα to minimise D
µ
1−α [p ‖ q] (note the swapped order of the

density arguments). An equivalent observation of the possibility of up-
per bounding logZ is made in [76] with a reparameterised version of
(C.15) in terms of n = 1 − α > 1.

As generally the family chosen for the approximate density q will not
include the target density as a member, the choice of variational object-
ive is important in determining the properties of how q approximates
the target density [41]. The standard variational objective correspond-
ing to D

µ
KL[q ‖ p] strongly penalises regions in X where p (x )

q (x ) � 1, there-
fore the approximate densities �tted using this objective tend to be un-
derdispersed compared to the target density, and in the case of target
densities with multiple separated modes �tted with a unimodal approx-
imate density, the approximate density will tend to �t only one mode
well (with �ts to the di�erent modes corresponding to di�erent local
optima in the objective). Conversely using the reversed KL divergence
D
µ
KL[p ‖ q] as the variational objective penalises approximate densities

where q (x )
p (x ) � 1 in regions with signi�cant mass under the target dens-

ity, therefore the approximate densities �tted using this objective tend
to be overdispersed compared to the target density, and in the case
of multimodal target densities, the approximate densities will tend to
‘cover’ multiple modes. Using a variational objective corresponding to
a Rényi divergence with 0 < α < 1, allows interpolating between these
two behaviours (with α close to one favouring underdispersed approx-
imate densities similar to D

µ
KL[q ‖ p], with the solutions becoming in-

creasingly dispersed as α becomes lower).

Figure C.2 gives examples of normal approximate densities �tted to
a bimodal target with three variational objectives to illustrate the ef-
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fect of the di�erent objectives on the �tted approximation. In Figure
C.2a the approximate density q was �tted by minimising Dλ

KL[p ‖ q],
the resulting q putting mass on both modes in the target (and signi�c-
ant mass on the region of low density between the two target modes).
The approximate density q in Figure C.2c was instead �tted by min-
imising Dλ

KL[q ‖ p], with the result that q concentrates its mass around
one of the modes. Finally Figure C.2b shows an approximate density
�tted by minimising the Rényi divergence (C.14) with α = 1

2 for which
Dλ
α [p ‖ q] = Dλ

α [q ‖ p] and which interpolates between the behaviours
of the two objectives used in Figures C.2a and C.2c. The approximate
density here is less dispersed than in the Dλ

KL[p ‖ q] case, but still places
more mass on the minor mode than the Dλ

KL[q ‖ p] case.

Once the variational objective has been de�ned, it still remains to choose
the family of the approximate density q and optimisation scheme. A
very common choice is to use an approximate density in the mean-�eld

variational family; this assumes that the variables the target density is
de�ned on can be grouped in to a set of mutually independent vectors
{xi}i ∈I and so the approximate density can be factorised as

q(x ) =
∏

i ∈I
qi (x i ). (C.16)

This assumption can signi�cantly reduce the computational demands
of variational inference and facilitates simple evaluation of the approx-
imate marginal density qi of each variable group once �tted. However
the mutual independence assumption prevents the approximate dens-
ity q from being able to represent any of the dependencies between the
variable groups in the target density. The early development of vari-
ational inference was largely based around mean-�eld family approx-
imations [208, 237], with the naming arising from its origins in mean-

�eld theory, used to study the behaviour of systems such as the Ising
spin model in statistical physics [205]. Despite the limitations in repres-
entational capacity imposed by the independence assumption, because
of its computational tractability mean-�eld methods remain very popu-
lar [42], with mean-�eld approximations allowing use of a particularly
simple algorithm for optimising the standard variational objective (C.9),
co-ordinate ascent variational inference [41, 42].

A more recent alternative to traditional mean-�eld variational methods,
is to assume a �xed parametric form for the approximate density, i.e.
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q(x ) = qθ (x ), where qθ is a density with respect to the measure µ of
a �xed parametric family with a vector of parameters θ [115, 144, 200,
219, 235]. Under this parametric assumption, rather than a variational
optimisation problem we can now consider the variational objective
functional L[q] as instead a function of the parameters `(θ ) = L[qθ ].
For the standard variational objective (C.9) we have that

`(θ ) =

∫

X

qθ (x ) log
p̃ (x )

qθ (x )
µ (dx ). (C.17)

Using the identities that for any qθ which is di�erentiable with respect
to θ we have that

∂qθ (x )

∂θ
= qθ (x )

∂ logqθ (x )
∂θ

(C.18)

and
∫

X

qθ (x )
∂ logqθ (x )
∂θ

µ (dx ) = 0, (C.19)

the gradient of (C.17) with respect θ can be expressed as

∂`

∂θ
=

∫

X

qθ (x )
∂ logqθ (x )
∂θ

log p̃ (x )

qθ (x )
µ (dx ). (C.20)

Typically both of the integrals in (C.17) and (C.20) de�ning the vari-
ational objective and its gradient will not have analytic solutions. How-
ever both take the forms of expectations of a random vector with dis-
tribution de�ned by the approximate density qθ . If we can generate
independent samples from qθ we can therefore form unbiased Monte
Carlo estimates of the objective and its gradient.

The unbiased gradient estimates can then be used in a stochastic gradi-
ent ascent method [225] to maximise `(θ ) with respect to θ . This basic
framework is applicable to a much broader class of target distributions
than the previously discussed variational inference approaches, requir-
ing only that we can pointwise evaluate a, potentially unnormalised,
density function p̃ for the target distribution. Likewise the only restric-
tions on the approximating distribution are that we can evaluate a dens-
ity function qθ which is di�erentiable with respect to its parameters θ
and that we can generate independent samples from this distribution
to form the Monte Carlo estimates.

For target distributions on a real-valued space, a simple choice for qθ
meeting these requirements is a multivariate normal density qθ (x ) =

N (x | µ,Σ ) with the mean µ and covariance Σ forming the parameters
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θ maximised with respect to. Using a diagonal covariance Σ would cor-
respond to a mean-�eld factorisation assumption for the approximate
density, however we can also use more general covariances including a
full dense matrix allowing for arbitrary covariance structure in the ap-
proximate density, or a sparse covariance matrix which exploits known
conditional independencies in the target distribution.

Although appealingly simple and �exible, the basic scheme as described
so far has a major pitfall which is that the variance of the gradients es-
timate computed by forming the obvious Monte Carlo estimator from
(C.20) typically has a very high variance for the complex target distri-
butions of interest. This necessitates either taking a very large number
of Monte Carlo samples to estimate the gradient for each parameter
update with su�cient accuracy or taking very small gradient steps to
allow stable optimisation. Therefore practical schemes based on this
idea generally require the use of variance reduction methods to estim-
ate the variational objective parameter gradient.

The black box variational inference (BBVI) algorithm of [219] proposes us-
ing two forms of variance reduction to compute more e�cient gradient
estimates - Rao-Blackwellisation and control variates. The Rao-Black-
wellisation method relies on being able to decompose the approximate
density qθ into a product of factors with per factor variational para-
meters and is so restricted to cases such as mean-�eld approximations
where this is the case. The control variate method is more general and
can be applied to non mean-�eld approximate densities.

An alternative variance reduction approach is proposed in the ADVI al-
gorithm of [144] which instead uses a reparameterisation of the approx-
imating distribution to produce a lower variance gradient estimator for
a more restricted class of target distributions which have a di�erenti-
able density with respect to the Lebesgue measure. It is assumed that
the samples from the approximating distribution can be generating us-
ing a transform sampling method, more speci�cally that there exists a
di�erentiable bijective function gθ : U → X and a distribution R on U

which has a density ρ which does not depend on θ such that

qθ (x ) = ρ
(
g−1θ (x )

) ������
∂g−1
θ

∂x

������. (C.21)
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In this case by the change of variables formula (1.22) discussed in Chap-
ter 1 if u is an independent sample from R then x = gθ (u) will be an
independent sample from the approximate distribution with density
qθ . This transformation can be used to reparameterise the variational
objective integral as

`(θ ) =

∫

U

ρ (u)
(
log(p̃ ◦ gθ (u)) + log

�����
∂gθ
∂u

����� − log ρ (u)
)
du (C.22)

with a corresponding gradient expression

∂`

∂θ
=

∫

U

ρ (u)

(
∂

∂θ
log(p̃ ◦ gθ (u)) + ∂

∂θ
log

�����
∂gθ
∂u

�����
)
du. (C.23)

As suggested by the name ADVI uses automatic di�erentiation to calcu-
late the gradient expression inside the parentheses in (C.23), with im-
portantly this requiring propagation of derivatives through the target
density function p̃ as well as the transformation gθ . To form a Monte
Carlo estimate of the gradient using this reparameterisation we there-
fore require the target model density to be di�erentiable and so it is less
general than the method used in BBVI, however as shown empirically
in [144] the resulting gradient estimator will tend to be signi�cantly
more e�cient requiring fewer samples to bring the variance to a reas-
onable level, with often gradients computed with a single sample being
su�cient for stable optimisation.
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PA R A M E T E R I S AT I O N

As the inference methods we propose in Chapter 4 work in the gen-
erator input space, we can reparameterise the input space to endow it
with a favourable form for inference. For example we will generally re-
parametrise input variables with bounded support to transformed vari-
ables with unbounded support, for example reparameterising in terms
of the logarithm of a strictly positive variable. In general working with
unbounded variables will simplify MCMC inference by preventing the
need to check transitions respect bounding constraints. Probabilistic
programming frameworks such as Stan [55] and PyMC3 [236] use a
range of such transformations when performing inference.

As well as transforming to variables with unbounded support, another
useful heuristic is to parameterise a model as far as possible in terms
of inputs variables which have unit variance. Three examples of po-
tentially suitable distributions with unit variance and unbounded sup-
port are the standard normalN (0, 1), inverse hyperbolic cosine (or hy-
perbolic secant) distribution InvCosh(0, 1) and the logistic distribution
Logistic(0,

√
3/π). The densities for all three shown for comparison

in Figure D.1 and Table D.1 shows reparameterisations for some com-
mon distributions in terms of variables distributed according to these
standard densities. Normalising the marginal variances of variables in
ρ typically makes it easier to choose an appropriate scale parameters
for the MCMC transitions.

Also note that although we motivated our de�nition of the random in-
puts u in Chapter 4 by saying it could be constructed by tracking all the
draws from a random number generator, in general we will not want
to parameterise u in terms of low-level uniform draws, but instead use
the output of higher-level functions for producing samples from stand-
ard densities using the transform and rejection sampling methods dis-
cussed in Chapter 2. This is important as if for example we de�ned as
inputs the uniform draws used in the rejection sampling routines used
to generate Gamma random variables, we would both require dealing

289
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Figure D.1.: Unit variance densities with unbounded support.

Original factor Reparametrisation

v
N

(
µ ,σ 2)

u v
N (0, 1) µ + σu

v
LogNorm(µ ,σ 2 )

u v
N (0, 1) exp(µ + σu)

v
Exp(λ)

u v
Logistic

(
0,
√
3
π

) 1
λ log

(
1 + exp

(
πu√
3

))

v
U (a,b )

u v
Logistic

(
0,
√
3
π

)
a + (b − a)

(
1 + exp

(
πu√
3

))−1

v
C≥0 (γ )

u v
InvCosh(0, 1) γ exp

(
πu
2

)

Table D.1.: Reparameterisations of random variables with some common
parametric distributions as deterministic transformations of unit-
variance unbounded support random variables.

with the complications involved with generators using variable num-
bers of random inputs as described in Chapter 4 and also have that
gx would be non-di�erentiable with respect to the rejection sampling
inputs even if the all of the operations performed with the Gamma vari-
able to produce the generated outputs are themselves di�erentiable. If
we instead use the generated Gamma variable itself as the input by in-
cluding an appropriate Gamma density factor in ρ we side step these
issues.

In some cases using the outputs of higher-level random number gener-
ator routines as the input variables will introduce dependencies between
the variables in the input density ρ. In particular if ui is drawn from a
distribution with parameters depending on one or more previous ran-
dom inputs {uj}j ∈J , then an appropriate conditional density factor on
ui given {uj}j ∈J will need to be included in ρ. By using alternative para-
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meterisations it may be possible to avoid introducing such dependen-
cies; for example a random input vi generated from a normal distribu-
tion with mean µ and standard deviation σ which depend on previous
random inputs {uj}j ∈J can instead be parameterised in terms of an inde-
pendent random variable ui distributed with a standard normal density
N (0, 1) and vi computed as σui + µ in the generator.

Such non-centred parameterisations [45, 204, 214] are available for ex-
ample for all location-scale family distributions. The reparametrisation
of the Gaussian VAE decoder discussed in Chapter 4 also uses this same
identity, and the term ‘reparameterisation trick’ is often used in the
machine learning literature to describe this idea [139]. Whether it is ne-
cessarily helpful to remove dependencies in ρ like this for the methods
discussed in Chapter 4 is an open question and will likely be model
speci�c; it has previously been found that non-centred parameterisa-
tions can be bene�cial when performing MCMC inference in hierarch-
ical models when the unobserved variables are only weakly identi�ed
by observations [36, 203, 204].
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E B O L T Z M A N N M A C H I N E

R E L A X AT I O N S

In this appendix we describe the continuous relaxation of the Boltzmann
machine distribution introduced in [266] and derive some basic results
which we use in the experiments with this model in Chapter 5.

TheBoltzmannmachine distribution on s ∈ {−1,+1}DB = S is de�ned

Ps (s ) =
1
ZB

exp
( 1
2s

TWs + sTb
)

ZB =
∑

s ∈S

(
exp

( 1
2s

TWs + sTb
))
.

(E.1)

We introduce an auxiliary real-valued vector random variable x ∈ RD

with a Gaussian conditional distribution

px |s (x | s ) = 1
(2π )D/2

exp
(
− 12

(
x −QTs

)T (
x −QTs

))
(E.2)

with Q a DB × D matrix such that QQT = W + D for a diagonal D
such that W + D � 0. In our experiments, based on the observation
in [266] that minimising the maximum eigenvalue ofW +D decreases
the maximal separation between the Gaussian components in the relax-
ation, we set D as the solution to the semi-de�nite programme

min
D

(λmax (W +D)) : W +D � 0 (E.3)

where λmax denotes the maximal eigenvalue. In general the optimised
W +D lies on the semi-de�nite cone and so has rank less thanDB hence
a Q can be found such that D < DB .

The resulting joint distribution on (x, s) is

px,s (x , s ) =
1

(2π )D/2ZB
exp

(
− 12x

Tx + sTQx − 1
2s

TQQTs +
1
2s

TWs + sTb
) (E.4)
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Using that QQT =W +D this can be simpli�ed to

px,s (x , s ) =
1

(2π )D/2ZB
exp

(
− 12x

Tx + sT (Qx +b) − 1
2s

TDs
)

(E.5)

=
exp

(
− 1

2x
Tx

)

(2π )D/2ZB exp
(
1
2 Tr(D)

)
DB∏

i=1

(
exp

(
si

(
qT
ix +bi

)))
, (E.6)

where
{
qT
i

}DB

i=1
are theDB rows ofQ . We can marginalise over the binary

state s as each si is conditionally independent of all the others given x
in the joint distribution. This gives the Boltzmann machine relaxation

density on x

px (x ) =
2DB exp

(
− 1

2x
Tx

)

(2π )D/2ZB exp
(
1
2 Tr(D)

)
DB∏

i=1

(
cosh

(
qT
ix +bi

))
, (E.7)

which is a structured Gaussian mixture density with 2DB components.
If we de�ne px (x ) =

1
Z exp(−ϕ (x )) with

ϕ (x ) =
1
2x

Tx −
DB∑

i=1

(
log cosh

(
qT
ix +bi

))
, (E.8)

then the normalisation constant Z of the relaxation density can be re-
lated to the normalising constant of the corresponding Boltzmann ma-
chine distribution by

logZ = logZB +
1
2 Tr(D) +

D

2 log(2π ) −DB log 2. (E.9)

It can also be shown that the �rst and second moments of the relax-
ation distribution are related to the �rst and second moments of the
corresponding Boltzmann machine distribution by

E[x] =
∫

X

x
∑

s ∈S

(
px |s (x | s ) Ps (s )

) dx

=
∑

s ∈S

(∫

X

x N
(
x ;QTs , I

)
dx Ps (s )

)

= E
[
QTs

]
= QTE[s],

(E.10)

E
[
xxT

]
=

∑

s ∈S

(∫

X

xxTN
(
x ;QTs , I

)
dx Ps (s )

)

= E
[
QTssQ + I

]
= QTE

[
ssT

]
Q + I.

(E.11)
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