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PROBLEM: INFERENCE IN GENERATIVE MODELS

Given: A generative model of

x : observed variables € X,
z : latent variables € 7,

where we can sample (x, z) pairs, but of the latent variables z given observed

may not have access to a density py ;. values x for the x variables.

DIFFERENTIABLE GENERATIVE MODELS
A generative model for (x, z) can be expressed in the form
u~Py, z=g,(u), x=gy(u),
with u € U the random inputs to generator functions g, and g,.

We define a differentiable generative model as further satisfying

e U =RP+, Z = RP=z and X = RP~: real-valued variables,
- P, has a density p, with respect to the Lebesgue measure,

- the gradient Vp, and Jacobian J, exist almosteverywhere.

UNDIRECTED AND DIRECTED GENERATIVE MODELS

Undirected generative model Directed generative model
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EXAMPLES OF DIFFERENTIABLE GENERATIVE MODELS
For all the example models here p,(z) = N(u|0,1).

Stochastic Lotka-Volterra predator-prey population model,

X = gx|z(z, uyz) : Euler-Maruyama integration of SDEs.

Generative model of monochrome digit images z

u = (up,uy), z=f4emeia(m(uy) +s(uy) © uy,)

with m and s parameteric functions trained to match
P, to the distribution of a dataset e.g. MNIST,
with blurred and downsampled observed images x = Dz.
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Task: Estimate conditional expectations

E[ £(2) | x = %] = /Z £(2) P (dz] 7).

MRS \ b prey population: dx; = (z1x; — zox1x2)dt + dny,
I """ e .= predator population: dx; = (z4x1x2 — z3x,)dt + dns.
-= Simulator for system can be expressed as a directed model
N INIF T
A z =g,(u;) = exp(o © u; + u) : sample parameters from prior,
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APPROXIMATE BAYESIAN COMPUTATION (ABC)

Family of approximate inference methods for generative models.

Key idea: observations x are decoupled from simulated observed variables x
by a kernel pxjx(x | x) = ke(x | x) with lime_,0 ke (x| x) = §(x — x), e.g.

ke(x|x)oc 1(]x — x| <€) (uniform ball), k(x]|x) = N(i | x, EZI) (Gaussian).

Kernel can be used to express approximate conditional expectations

N
FU@x=xe=0 L

with lim E[f(2) | X = X; €] = E[f(2) | x = x].

€—0
Typically a further approximation is made of conditioning only on
reduced-dimensionality summary statistics of observed data s(x) € S

E[f(2) s = s(&); €] = ——— F(2) ke(s(%) | 5(x)) Py (dx, dz),
Ps (S(X)) XxZ

with in general hi% E[f(z)|s =s(x); €] #E[f(z) | x = x].

f(2) ke(x | x) Py - (dx, dz),

INFERENCE IN THE GENERATOR INPUT SPACE

Us X

x € [0.45,0.55]

gx,z

= lgw) € [0.45,0.55] -

We can rewrite the ABC conditional expectation as an integral over the input space

ELF(2) 1= % €] = = | £ 0.0 kel | (1) pua) du

We can therefore perform ABC inference by constructing a MCMC transition
operator in input space with target density 7. (u) oc ko (x| gx (1)) pu ().

Uo X

By taking the € — 0 limit of the above and applying Federer’s Co-Area Formula the
exact conditional expectation can be expressed as an integral over an implicitly

defined manifold g ' (x) = {u € U : g, (u) = x} embedded in U [1]

E[f(z)|x=%]=—— [
Px(X) Jegz(x)

Therefore we can perform inference by constructing an MCMC operator with

1

2 pu(u) HP»Px(du).

f o g (u) |Jg. (1) Jg, ()

7 pulu) on gl (%).

stationary distribution with density m(u) o ‘ng(u)ng(u)T

e oneee: - Agymptotically exact inference in differentiable generative models gpsge
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CONSTRAINED HAMILTONIAN MONTE CARLO (CHMC)

Numerically simulating a constrained
Hamiltonian dynamic with a symplectic

integrator [2] defines a reversible and —

measure-preserving flow map on an

implicitly defined constraint manifold.

This can be used to construct a MCMC

transition leaving a target distribution

on the manifold invariant [3].
NUMERICAL EXPERIMENTS
~ 6| Prey and predator populations observed at 50 timepoints each
= ) (D, = 100) with task to infer four system parameters z;.,. Four

v £ i P
o % MCMC methods compared
Q:) 5 a « CHMC (full) - constrained HMC conditioning on full data,
S 0 « CHMC (summ.) - constrained HMC conditioning on
L':\ -~ 6| nine-dimensional summary statistics of data,
== é « ABCSS - elliptical slice sampling in generator input space
S a2 . with Gaussian kernel e = 10 and conditioning on full data,
"Q‘_; Lz) 2 | « ABC HMC - unconstrained HMC in generator input space
E 5 ) | with Gaussian kernel e = 10 and conditioning on full data.
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Binocular 3D
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CONCLUSIONS

We propose a method for inference in differentiable generative models.

The approach is an asymptotically exact alternative to ABC where applicable:
computationally tractable inference with e — 0 and full observed data.

Key idea is to view conditioning as constraining the inputs to a generator function.

We use constrained HMC to efficiently explore a target distribution on the
constraint manifold corresponding to inputs consistent with observations.
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