
Asymptotically exact inference in

differentiable generative models

Matthew M. Graham and Amos J. Storkey

School of Informatics
University of Edinburgh

e-mail: m.m.graham@ed.ac.uk; a.storkey@ed.ac.uk

Abstract: Many generative models can be expressed as a differentiable
function applied to input variables sampled from a known probability distri-
bution. This framework includes both the generative component of learned
parametric models such as variational autoencoders and generative adversar-
ial networks, and also procedurally defined simulator models which involve
only differentiable operations. Though the distribution on the input variables
to such models is known, often the distribution on the output variables is
only implicitly defined. We present a method for performing efficient Markov
chain Monte Carlo inference in such models when conditioning on observa-
tions of the model output. For some models this offers an asymptotically
exact inference method where approximate Bayesian computation might
otherwise be employed. We use the intuition that computing conditional
expectations is equivalent to integrating over a density defined on the mani-
fold corresponding to the set of inputs consistent with the observed outputs.
This motivates the use of a constrained variant of Hamiltonian Monte Carlo
which leverages the smooth geometry of the manifold to coherently move
between inputs exactly consistent with observations. We validate the method
by performing inference experiments in a diverse set of models.

MSC 2010 subject classifications: Primary 65C05; secondary 62F15.
Keywords and phrases: Generative models, Implicit models, Markov
chain Monte Carlo, Approximate Bayesian computation.

Contents

1 Introduction . 1
2 Notation . 2
3 Problem definition . 3
4 Differentiable generative models 3
5 Model parameterisation . 5
6 Directed and undirected generative models 6
7 Approximate Bayesian Computation 7
8 Inference in the input space 14
9 Constrained Hamiltonian Monte Carlo 18
10 Implementation details . 26
11 Related work . 30
12 Numerical experiments . 32
13 Discussion . 52
References . 54

0

mailto:m.m.graham@ed.ac.uk
mailto:a.storkey@ed.ac.uk

Graham and Storkey/Inference in differentiable generative models 1

1. Introduction

There has been a long interest in probabilistic models which are defined implicitly
[10, 40, 27] - that is where we can generate random values for the latent and
observed variables in the model, but we cannot tractably evaluate a density
function for the probability distribution on those variables. This is in contrast
to the more typical case where the probabilistic model of interest is defined by
specifying an explicit (potentially unnormalised) probability density function on
latent and observed variables, often via a graphical model such as a Bayesian
network [74], Markov random field [45] or factor graph [32].

Although implicit models are challenging to work with from an inferential
perspective, they are ubiquitous in science and engineering in the form of
probabilistic models defined by the computational simulation of a physical or
biological system. Typically simulator models are specified procedurally in code
with any stochasticity introduced by drawing values from a pseudo-random
number generator (PRNG). The complexity of the function mapping from random
inputs to simulated outputs means that computing a probability density on the
outputs is usually at best computationally challenging and often intractable.

Implicit models also arise through use of distributions defined by their quan-
tile function (inverse of the cumulative distribution function (CDF)) [42, 95].
Independent samples can be easily generated from such distributions by mapping
standard uniform variates through the quantile function. Although these quantile
distributions can offer very flexible descriptions of shape of a distribution [36]
often the quantile function will not have a closed-form inverse meaning their
CDF and so density function cannot be evaluated analytically.

Recently implicit generative models have also been the subject of much interest
in the machine learning community due to the significant gains in modelling
flexibility offered by dropping the requirement to be able to compute an explicit
density function on model outputs [62, 93]. For instance generative-adversarial
networks (GANs) [38] have become a popular approach in unsupervised machine
learning for training models which can generate plausible simulated data points,
typically images, given a large collection of data points to learn from. The
generator of a GAN takes the form of differentiable network which receives as
input a vector of values drawn from a simple distribution such as the standard
normal and outputs for example a generated image. The generator function will
typically be non-injective however, meaning that we cannot tractably evaluate
the probability density of the generated outputs as this requires integrating over
implicitly defined sets of inputs consistent with a particular output.

A lack of an explicit density on the variables in a generative model makes it non-
trivial to apply approximate inference approaches such as Markov chain Monte
Carlo (MCMC) to infer the values of unobserved variables given known values for
a set of observed variables in the model. This has spurred the development of
inference approaches specifically targeted at implicit generative models such as
indirect inference [40] and approximate Bayesian computation (ABC) [10].

In both indirect inference and ABC, inferences about plausible values of
the unobserved variables are made by computing distances between simulated

Graham and Storkey/Inference in differentiable generative models 2

observed variables and data. At a qualitative level, values of the unobserved
variables associated with simulated observations that are ‘near’ to the data are
viewed to be more plausible. This approximation that the simulated observations
are only close but not equal to the observed data makes the inference problem
more tractable but also biases the inference output. Further distance measures
tend to become increasingly less informative as the dimensionality of a space
increases, making it difficult to use these approaches to perform inference in
models with large numbers of unobserved variables [56].

In this article we describe a Hamiltonian Monte Carlo (HMC) [28, 55] method
for performing inference in a sub-class of implicitly-defined generative models
where the mapping from random inputs to the model to simulated observed
and latent variables is differentiable. Unlike existing approaches, this method
allows inference to be performed by conditioning the observed variables in the
model to be arbitrarily close to data values. This means that subject to the usual
conditions on the Markov chain being irreducible and aperiodic, asymptotically
exact inference can be performed: conditional expectation estimates computed
using the method will converge in the asymptotic limit to their true values.
Further by exploiting gradient information the approach is able to perform
efficient inference in models with large numbers of unobserved variables and
conditioning on all observed data rather than low-dimensional summaries.

2. Notation

We will briefly summarise the notation used in the rest of this article. Lower-
case bold-faced characters are used to represent vector quantities, e.g. x, with
upper case bold-face reserved for matrix quantities, e.g. A. The lower triangular
Cholesky factor of a positive definite matrix A is chol(A). The determinant of
a matrix A is |A|. The Euclidean norm of a vector x is ‖x‖2 and the infinity
norm is ‖x‖∞. Calligraphic characters are used for sets for example A and script
characters for σ-algebras on a set, e.g. E . The Borel σ-algebra on a topological
space X is B(X). The indicator function on a set A is IA. Sans-serif variants of
characters are used for random variables (or vectors), for example x is a random
vector. The expectation of a random variable x is E[x] while E[x | y = y] is the
conditional expectation of x given y = y. The distribution of a random variable
x is Px. For two random variables x and y their joint distribution is Px,y and
the regular conditional distribution on x given y = y is denoted Px|y(· | y). The
density of a distribution Px of a real-valued random variable x with respect to a
reference measure µ is px = dPx

dµ . The joint density on random variables x and
y and conditional density on x given y are similarly denoted by px,y and px|y.
The density of a multivariate normal distribution with mean µ and covariance
Σ at a point x is N (x |µ,Σ). The D-dimensional Hausdorff measure on a
metric space is HD. All integrals without an explicit measure indicated should
be assumed to be with respect to the Lebesgue measure λ. The gradient of a
function f : RD → R is ∇f : RD → RD with [∇f(x)]i = ∂f

∂xi
and the Jacobian

of a function g : RN → RM is Jg : RN → RM×N with [Jg(x)]m,n = ∂gm
∂xn

.

Graham and Storkey/Inference in differentiable generative models 3

3. Problem definition

Let (S,E ,P) be a probability space, and (X ,G), (Z,H) be two measurable
spaces. We denote the vector of observed random variables in the model of
interest as x : S → X and the vector of unobserved random variables that we
wish to infer z : S → Z. Our objective is to be able to compute conditional
expectations of arbitrary measurable functions f : Z → F of the unobserved
variables given known values for the observed variables x, where the conditional
expectation E[f(z) | x] : X → F is defined as a measurable function satisfying∫

A
E[f(z) | x = x]Px(dx) =

∫
A×Z

f(z)Px,z(dx,dz) ∀A ∈ G , (1)

with this identity uniquely defining E[f(z) | x] up to Px-null sets.
In models where the joint distribution Px,z is specified by an explicit density

px,z with respect to a product measure µx×µz, then we have the standard result
that the conditional expectation can be expressed as

E[f(z) | x = x] =
1

px(x)

∫
Z
f(z) px,z(x, z)µz(dz) ∀x ∈ X : px(x) > 0. (2)

Although we typically cannot analytically evaluate this integral or the marginal
density px(x), having access to the joint density px,z is sufficient to allow us to
apply approximate methods such as MCMC and variational inference to estimate
conditional expectations. In this article we consider the problem of computing
conditional expectations in models where we can generate samples from the joint
distribution Px,z but we cannot evaluate the joint density px,z.

4. Differentiable generative models

Any probabilistic model that we can programmatically generate values from can
be expressed in the form of a deterministic function which takes as input a vector
of random inputs sampled from a known distribution. This observation just
corresponds to stating that we can track all of the calls to a PRNG in a program,
and that given the values sampled from the PRNG all of the operations then
performed by the program are deterministic1. To formalise this idea below we
give a concrete definition for what we will consider as constituting a generative
model for a set of observed variables x and unobserved variables z.

Definition 1 (Generative model): Let u : S → U be a random vector taking
on values in a measurable space (U ,F). We require that the distribution Pu has
a density pu with respect to a reference measure µ which we can evalulate and
that it is tractable to generate independent samples from Pu. If gx : U → X and
gz : U → Z are measurable functions such that

x(s) = gx ◦ u(s) and z(s) = gz ◦ u(s) ∀s ∈ S (3)

1For the purposes of clarity of exposition we consider the outputs of the PRNG as truly
random, even though in reality they are deterministically computed.

Graham and Storkey/Inference in differentiable generative models 4

then we define (U ,F, pu, µ, gx, gz) as a generative model for x and z. We refer to
(U ,F) as the input space of the generative model, (X ,G) the observed output
space and (Z,G) the unobserved output space. Further we term gx as the
generator of x and likewise gz the generator of z. The random vector u is the
random inputs and the density pu the input density.

The input vector u encapsulates all of the values drawn from a PRNG in the
code of a generative model and the generator functions gx and gz represent
the operations used to generate values for x and z respectively given values for
the random inputs u. In some cases the number of random inputs used in a
generator evaluation will depend on the values of the random inputs themselves,
for example if there is a branching statement which depends on a random
input and the operations in each branch use different random inputs. Although
implementationally more challenging, we can still consider this case within the
above definition by enumerating the random inputs required in all possible
control flow paths through the generator code and mapping each to a different
element in u. In interpreted languages, this can be done lazily by detecting if
a call to a PRNG object has occurred at the same point in a execution trace
previously and if so matching to same element in u as used previously otherwise
matching to a new u element.

In this article we concentrate on a restricted class of generative models which
we term differentiable generative models.

Definition 2 (Differentiable generative model): Let (U ,F, pu, µ, gx, gz) be a
generative model for x and z as specified in Definition 1. Then if the following
conditions are satisfied

1. U ⊆ RDu , F = B(U) and X ⊆ RDx , G = B(X),
2. Pu has a density pu with respect to the Lebesgue measure µ = λDu ,
3. the input density gradient ∇pu exists Pu-almost everywhere,
4. the generator Jacobian Jgx

exists Pu-almost everywhere.

we describe (U ,F, pu, µ, gx, gz) as a differentiable generative model.

These requirements are quite severe: for example they exclude any models
with discrete random inputs and those in which branch statements in the
generator code introduce discontinuities. This means the proposed method is
not for instance applicable to models with discrete latent variables which are
commonly the target of existing ABC applications. However there are still a
large class of interesting models which do meet these conditions: for example
simulator models based on approximate integration of ordinary differential
equations (ODEs) (combined with a stochastic observation model) or stochastic
differential equation (SDE) models without a jump-process component. Similarly
as differentiability is usually a requirement for training the generative models
used in machine learning, many such models will also fall in to this class.

A further restriction we will typically assume is that the Jacobian Jgx
is full

row-rank Pu-almost everywhere, which also necessarily means that Du ≥ Dx i.e
the number of random inputs is at least as many as the number of observed
variables that will be conditioned on. In cases where this does not hold the

Graham and Storkey/Inference in differentiable generative models 5

implicitly defined probability distribution Px will not be absolutely continuous
with respect to the Dx-dimensional Lebesgue measure on X . Instead Px will only
have support on a sub-manifold of dimension locally equal to the rank of Jgx

and conditioning on arbitrary x ∈ X is not a well-defined operation.
Although we only required the existence of the input density gradient ∇pu and

generator Jacobian Jgx
above, unsurprisingly this is motivated by the need to

evaluate these terms in the proposed method. Although this may seem a limiting
requirement for complex models, the availability of efficient general-purpose
automatic differentiation (AD) libraries [8] means it is possible to automatically
calculate the necessary derivatives given just the code defining the forward
functions pu and gx. For generative models implemented in existing code this
will typically require re-coding using an appropriate AD framework.

When applying reverse-mode AD [89, 54] to a function h : RK → RL the
Jacobian Jh can be calculated at an operation-count cost which is at most cL
times the corresponding cost of evaluating the function h itself. The constant
factor c guaranteed to be less than six and more typically around two to three [8].
The gradient ∇pu can therefore be evaluated at a cost proportional to evaluating
the density itself and the Jacobian Jgx

can be evaluated at a cost which is
proportional to Dx times the cost of a single evaluation of the generator gx.

5. Model parameterisation

A generative model (U ,F, pu, µ, gx, gz) for x and z will not uniquely define the
resulting joint distribution Px,z. As a simple example if (U ,F, pu, µ, gx, gz) is
a differentiable generative model and f : U → U is a diffeomorphism, then
we can reparameterise the random inputs as v = f−1(u). Using the change of
variables formula, the corresponding input density is pv(v) = |Jf(v)| pu(f(v))
and (U ,F, pv, µ, gx ◦ f , gz ◦ f) is also a generative model for x and z.

The MCMC method we propose performs updates in the input space to the
generator, therefore the ability to reparameterise a generative model can be
exploited to endow the input density with properties favourable for MCMC in-
ference. For example it will generally be desirable to reparameterise variables
with bounded support to transformed variables with unbounded support, for
example reparameterising in terms of the logarithm of a strictly positive variable.
In general performing updates to unbounded variables simplifies MCMC infer-
ence by preventing the need to check transitions respect bounding constraints.
Probabilistic programming frameworks such as Stan [34] and PyMC3 [85] make
use of a range of such transformations within their MCMC implementations.
Choosing parameterisations in terms input variables with a common prior scale,
for example using unit variance distributions, is also a useful heuristic as it will
typically simplify the choice of scale parameters of MCMC updates.

Although we motivated our definition of u by saying it could be constructed by
tracking all the draws from a PRNG, in general we will not want to parameterise
u in terms of low-level uniform draws, but instead use the output of higher-level
functions for producing samples from standard densities. This is important as

Graham and Storkey/Inference in differentiable generative models 6

if for example we defined as inputs the uniform draws used in the rejection
sampling routines typically used to generate Gamma random variables, the
resulting gx would be non-differentiable. If we instead use the generated Gamma
variable itself as the input by including an appropriate Gamma density factor in
pu we side step this issue.

In some cases using the outputs of higher-level PRNG routines as the input
variables will introduce dependencies between the variables in the input density
pu. In particular if ui corresponds to the output of a routine which is passed
arguments depending on one or more previous random inputs {uj}j∈J , then
an appropriate conditional density factor on ui given {uj}j∈J will need to be
included in pu. By using alternative parameterisations it may be possible to
avoid introducing such dependencies; for example a random input vi generated
from a normal distribution with mean µ and standard deviation σ which depend
on previous random inputs {uj}j∈J can instead be parameterised in terms
of an independent random variable ui distributed with a standard normal
density N (0, 1) and vi computed as σui + µ in the generator. Such non-centred
parameterisations [78, 18, 73] (also known by the ‘reparameterisation trick’ in the
machine learning literature [46, 82]) are available for example for all location-scale
family distributions. Whether it is necessarily helpful to remove dependencies
in pu like this for the proposed method is an open question and will likely be
model specific; it has previously been found that non-centred parameterisations
can be beneficial when performing MCMC inference in hierarchical models when
the unobserved variables are only weakly identified by observations [72, 73, 14].

6. Directed and undirected generative models

So far we have considered generative models where both the observed and
unobserved variables are jointly generated from u without assuming any particular
relationship between x and z. This structure is shown as a factor graph in Figure
1a and a corresponding factor graph for just x and z with u marginalised out
shown in Figure 1b.

A common special case is when the input space decomposes as U = U1 × U2
and the unobserved variables z are generated from a subset of the random inputs
u1 : S → U1 (e.g. corresponding to sampling from a prior distribution over the
parameters of a simulator model), with the observed variables x then generated
from a function gx|z : Z × U2 → X which takes as input both the generated
unobserved variables z and the remaining random variables u2 : S → U2, i.e.
x = gx|z(z,u2) = gx|z(gz(u1), u2). This is illustrated as a factor graph in Figure
1c. Again a corresponding factor graph with u marginalised out is shown in
Figure 1d, with in this case the structure of the generator making a directed
factorisation in terms pz and px|z natural.

We will therefore term models with this structure as directed generative
models (with the more general case termed undirected for symmetry). The
method we propose are equally applicable to undirected and directed generative
models, though often the extra structure present in the directed case can allow

Graham and Storkey/Inference in differentiable generative models 7

u
pu

z

x

gz

gx

(a)

z

x

px,z

(b)

u1
pu1

z
gz

x

gx|zu2
pu2

(c)

z
pz

x

px|z

(d)

Fig 1: Factor graphs visualising the structure of models considered in this paper.
Circular nodes represent random variables, filled square nodes probabilistic
factors and unfilled diamonds deterministic factors. Shaded circular nodes are
observed. Panel (a) shows the more general undirected model case in which
observed variables x and latent variables z are jointly generated from random
inputs u by mapping through functions gx and gz, with (b) showing an equivalent
factor graph after marginalising out the random inputs. Panel (c) shows the
directed model case in which we first generate the latent variables z from a
subset of the random inputs u1 then generate the observed variables x from z
and the remaining random inputs u2, with (d) showing resulting natural directed
factorisation of joint distribution when marginalising out u1 and u2.

computational gains. Most ABC inference methods concentrate on directed
generative models. Typically the marginal density pz (i.e. the density of the prior
distribution on the unobserved variables) will be tractable to explicitly compute,
such that it is only the conditional density px|z which cannot be evaluated.
As this conditional density is often referred to as the likelihood, an alternative
designation of likelihood-free inference is sometimes used for ABC and related
methods.

7. Approximate Bayesian Computation

We will now review the ABC approach to inference in generative models in order
to help motivate our proposed method. We will assume here that the observed
variables in the generative model of interest are real-valued, i.e. that X ⊆ RDx ,
with inference in generative models with discrete observations being in general
simpler from a theoretical perspective (though not necessarily computationally).
The auxiliary-variable description we give of ABC is non-standard, but is consis-
tent with the algorithms used in practice and will help illustrate the relation of
our proposed approach to existing ABC methods.

We introduce an auxiliary X -valued random vector y which depends on the
observed random vector x via a regular conditional distribution Py|x we term the
kernel which has a conditional density kε : X × X → [0,∞) with respect to the
Lebesgue measure,

Py|x(A |x) =

∫
A
kε(y;x) dy ∀A ∈ B(X). (4)

Graham and Storkey/Inference in differentiable generative models 8

The kernel density kε is parameterised by a tolerance ε and chosen such that the
following conditions holds for arbitrary measurable functions f : X → R

lim
ε→0

∫
X
f(y) kε(y;x) dy = f(x) (5)

and lim
ε→0

∫
X
f(x) kε(y;x) dx = f(y). (6)

For kernels meeting these condition (5) we have that ∀A ∈ B(X)

lim
ε→0

Py(A) = lim
ε→0

∫
X
Py|x(A |x)Px(dx) (7)

= lim
ε→0

∫
X

∫
X
IA(y) kε(y;x) dy Px(dx) (8)

=

∫
X
IA(x)Px(dx) = Px(A), (9)

i.e. that in the limit ε → 0, y has the same distribution as x. Intuitively, as
we decrease the tolerance ε we increasingly tightly constrain y and x to have
similar distributions. Two common choices of kernels satisfying (5) and (6) are
the uniform ball and Gaussian kernels which respectively have densities

kε(y;x) ∝ 1

εDx
I[0,ε](‖y − x‖2) (uniform ball kernel), (10)

and kε(y;x) = N
(
y |x, ε2I

)
(Gaussian kernel). (11)

The marginal distribution of y can be written ∀A ∈ B(X) as

Py(A) =

∫
X×Z

Py|x(A |x)Px(dx) =

∫
A

∫
X
kε(y;x)Px(dx) dy, (12)

from which we have that Py has a density with respect to the Lebesgue measure

py(y) =

∫
X
kε(y;x)Px(dx) =

∫
X×Z

kε(y;x)Px,z(dx,dz) ∀y ∈ X . (13)

The density py exists for ε > 0 irrespective of whether Px has a density with
respect to the Lebesgue measure (it may not for example if Px only has support
on a sub-manifold of X). Using this definition of the density py we have that for
any measurable function f : Z → F and for all A ∈ B(X) that∫
A×Z

f(z)Py,z(dy,dz) =

∫
A×X×Z

f(z)Py,x,z(dy,dx,dz) (14)

=

∫
A

∫
X×Z

f(z) kε(y;x)Px,z(dx,dz) dy (15)

=

∫
A∗

1

py(y)

∫
X×Z

f(z) kε(y;x)Px,z(dx,dz)Py(dy) (16)

Graham and Storkey/Inference in differentiable generative models 9

where we define A∗ = {y ∈ A : py(y) > 0}. Comparing this to the definition of
the conditional expectation in (1) we have that ∀y ∈ X : py(y) > 0

E[f(z) | y = y; ε] =
1

py(y)

∫
X×Z

f(z) kε(y;x)Px,z(dx,dz) (17)

=

∫
X×Z f(z) kε(y;x)Px,z(dx,dz)∫
X×Z kε(y;x)Px,z(dx,dz)

. (18)

For the case of a model in which Pz has a density pz with respect to the Lebesgue
measure, then if we use f = IA for A ∈ B(Z) in (18) and the definition of a
regular conditional distribution Pz|y(A |y) ≡ E[IA(z) | y = y] we have

Pz|y(A |y) =

∫
A

∫
X kε(y;x)Px|z(dx | z) pz(z)

py(y)
dz. (19)

In this case the regular conditional distribution Pz|y has a conditional density
pz|y with respect to the Lebesgue measure,

pz|y(z |y) =
1

py(y)

∫
X
kε(y;x)Px|z(dx | z) pz(z). (20)

In reference to terminology of Bayesian inference, the density pz|y is termed the
ABC posterior density, and therefore conditional expectations of the form of (18)
which correspond to an integral with respect to this ABC posterior, are termed
ABC posterior expectations.

We now consider how E[f(z) | y = y; ε] is related to the conditional expectation
we are interested in evaluating E[f(z) | x = y]. If we assume that Px,z is absolutely
continuous with respect to the Lebesgue measure with density px,z and using (6)
we have that ∀y ∈ X : px(y) > 0

lim
ε→0

E[f(z) | y = y; ε] = lim
ε→0

∫
Z f(z)

∫
X kε(y; x) px,z(x, z) dx dz∫

Z
∫
X kε(y; x) px,z(x, z) dx dz

(21)

=

∫
Z f(z) px,z(y, z) dz∫
Z px,z(y, z) dz

(22)

= E[f(z) | x = y]. (23)

We therefore have that conditional expectations E[f(z) | y; ε] converge as ε→ 0 to
the conditional expectations we wish to be able to estimate E[f(z) | x]. Crucially
we also have that the numerator and denominator of (18) take the forms of
expectations of known functions of x and z, i.e.

E[f(z) | y = y; ε] =
E[f(z) kε(y; x)]

E[kε(y; x)]
. (24)

Generating Monte Carlo estimates of these expectations only requires us to be
able to generate samples from Px,z without any requirement to be able to evaluate

Graham and Storkey/Inference in differentiable generative models 10

px,z and therefore can be achieved in the implicit generative models of interest.
We can therefore estimate E[f(z) | y = y; ε] by generating a set of independent

pairs of random vectors {xs, zs}Ss=1 from Px,z
2 and computing Monte Carlo

estimates of the numerator and denominator in (24), which gives the following
estimator for the conditional expectation E[f(z) | y = y; ε]

f̂S,ε =

∑S
s=1(f(zs) kε(y; xs))∑S

s=1(kε(y; xs))
(25)

This directly corresponds to an importance sampling estimator for expectations
with respect to Px,z|y using Px,z as the proposal distribution. Therefore if both

f(z) kε(y; x) and kε(y; x) have finite variance, then the estimator f̂S,ε will be
consistent,

lim
S→∞

E
[̂
fS,ε
]

= E[f(z) | y = y; ε]. (26)

If the kernel used is the uniform ball kernel (10), the estimator can be manipulated
in to a particularly intuitive form

f̂S,ε =
1

|A|
∑
s∈A

(f(zs)) with A = {s ∈ {1 . . . S} : ‖y − xs‖2 < ε} (27)

which corresponds to averaging the values of sampled unobserved variables zs
where the corresponding samples of model observed variables xs are within a
distance ε of the observed data y. The is the standard ABC rejection algorithm
[84, 90, 33, 96, 79] , with A corresponding to the indices of the set of accepted
samples, with the other samples being ‘rejected’ as the simulated observations
xs are more than a distance ε from the observed data y. As an instance of a
rejection sampler, conditioned on the acceptance set containing at least one
sample, i.e. |A| > 0, (27) is an unbiased estimator for E[f(z) | y = y; ε].

If we instead use a Gaussian kernel (11), then as for the general case for
importance sampling, the estimator (25) is no longer unbiased. In the Gaussian
kernel case we more highly weight samples if the simulated observed variables
are closer to the data which may be viewed as preferable to equally weighting all
values within a fixed tolerance as in ABC reject. However as it has support on
all of X , the Gaussian kernel also gives non-zero weights to all of the samples,
with typically most making little contribution to the expectation. This may be
considered somewhat wasteful of computation versus the rejection scheme which
creates a sparse set of samples to compute expectations over [10]. Kernels with
bounded support but non-flat densities such as the Epanechnikov kernel [29]
which has a parabolic density in a bounded region, offer some of the advantages
of both the uniform ball and Gaussian kernels.

Irrespective of the kernel chosen, the estimate formed is only consistent for the
ABC posterior expectation E[f(z) | y = y; ε] rather than the actual posterior ex-
pectation E[f(z) | x = y] we are directly interested in. As ε→ 0, E[f(z) | y = y; ε]

2As ABC is usually applied to directed models this is usually considered as generating z
from a prior then simulating x given z however more generally we can sample from the joint.

Graham and Storkey/Inference in differentiable generative models 11

converges to E[f(z) | x = y], however for reject ABC we also have that as ε→ 0
the proportion of accepted samples will tend to zero meaning that we need to
expend increasing computational effort to get an estimator for E[f(z) | y = y; ε]
with a similar variance (which by a standard Monte Carlo argument is inversely
proportional to the number of accepted samples).

In the more general importance sampling case, although we do not explicitly
reject any samples if using a kernel with unbounded support, we instead have that
as ε→ 0 that the kernel weightings in (25) will becoming increasingly dominated
by the few samples closest to the observed data and so the contribution from
to the estimator (25) from all but a few will be negligible, again leading to an
increasing number of samples being needed to keep the variance of the estimator
reasonable. For the exact ε = 0 case we would only accept (or equivalently put
non-zero weight on) samples for which xs is exactly equal to y. For X ⊆ RDx

if Px is absolutely continuous with respect to the Lebesgue measure, the event
x = y has zero measure under Px,z and so some degree of approximation due to
a ε > 0 is always required in practice in these simple Monte Carlo ABC schemes.

When the dimensionality of the observed variable vector x is high it quickly
becomes impractical to reduce the variance of these naive Monte Carlo estimators
for (18) to reasonable levels without using large ε which introduces significant
approximation error. The ABC rejection method is well known to scale poorly with
dimensionality due to curse of dimensionality effects [16, 56, 77]. Although often
discussed specifically in the context of ABC, the issues faced are much the same
as encountered when trying to use any simple rejection or importance sampling
scheme to approximate expectations with respect to a probability distribution on
a high-dimensional space. If the proposal distribution (Px,z here) is significantly
more diffuse than the target distribution (Px,z|y here) an exponentially small
proportion of the probability mass of the proposal distribution will lie in the
typical set of the target distribution and so very few samples will be accepted or
have non-negligible importance weights.

Rather than conditioning on the full observed data most applications of ABC

methods therefore instead use summary statistics to extract lower dimensional
representations of the observed data [77]. A function s : X → T is defined which
computes summary statistics from simulated observed outputs x and observed
data y with the dimensionality of the summaries, dim(T), typically much smaller
than Dx. The ABC posterior expectation is then computed using

E[f(z) | s = s(y); ε] =

∫
X×Z f(z) kε(s(y); s(x))Px,z(dx,dz)∫
X×Z kε(s(y); s(x))Px,z(dx,dz)

, (28)

with now the variable conditioned on the T -valued variable s with

Ps|x(A |x) =

∫
A
kε(s; s(x)) ds ∀A ∈ B(T), x ∈ X . (29)

In general the statistics used will not be sufficient - the posterior distribution on
z will differ when conditioning on s(x) compared to conditioning on x directly.
By a data processing inequality argument we know that the mutual information

Graham and Storkey/Inference in differentiable generative models 12

between z and s(x) will be less than or equal to the mutual information between
z and x therefore we would expect for the posterior distribution on z given s(x)
to be less informative about z than the posterior distribution given x [5]. This
means that even in the limit of ε→ 0 estimates of the ABC summary statistics
posterior expectation E[f(z) | s = s(y); ε] will generally not converge to the true
posterior expectations E[f(z) | x = y] of interest.

ABC methods therefore trade-off between the approximation errors introduced
due to using summary statistics and a non-zero tolerance ε, and the Monte Carlo
error from using a finite number of samples in the estimates. If informative
summary statistics can be found then typically the approximation error can be
kept to a more reasonable level compared to the conditioning on the full data
without the Monte Carlo error becoming impractically large by allowing a smaller
ε to be used while maintaining a reasonable accept rate. Finding informative
low-dimensional summaries is often critical to getting ABC methods to work
well in practice and there is a wide literature on methods for choosing summary
statistics - see [77] and [17] for reviews.

In some cases use of summary statistics might not be viewed just as a compu-
tational aid, but as a purposeful exercise in removing ‘irrelevant’ information
from the data. For example if inferring plausible parameter values for a dynamic
model of a system given observed sequences of the system state showing periodic
behaviour, then we might view the phase of observed state sequences as an
irrelevant artefact of the arbitrary point at which observations were started. In
this case conditioning on the exact observed data could be viewed as over con-
straining the model to reproduce features of the data which are only incidental,
and using summary statistics which are invariant to phase could be preferable
to conditioning on the full data [99].

Similarly the introduction of a kernel in ABC need not be viewed as simply
a method for making inference tractable, but instead as part of the modelling
process [98]. In general we will expect any observed data to be subject to
some amount of measurement noise (at the very least it will include some
quantification noise) and so conditioning the model to reproduce the exact values
of the data is not necessarily desirable. In this context we can consider y the noisy
measured version of an underlying state x and the kernel Py|x as representing
the measurement noise model. We might also instead view the kernel Py|x as
accounting for the mismatch between our proposed model for how the observed
values are generated and the true data generating process [81, 98]. In both these
cases we could then consider ε as a further unobserved variable to be inferred.

These examples demonstrate that in some cases there may be a modelling
motivation for introducing summary statistics or a ‘noise’ kernel. In practice
however the summary statistics and tolerance ε are more typically chosen on
grounds of computational tractability [56, 83, 77]. Therefore inference methods
which are able to maintain tractability when conditioning on higher-dimensional
summaries or in some cases all observations, and when using smaller tolerance ε
values are of significant practical interest.

As an alternative to the simple Monte Carlo ABC inference schemes so far
described, methods have also been proposed to utilise more scalable inference

Graham and Storkey/Inference in differentiable generative models 13

methods to estimate the approximate expectation (17) including sequential Monte
Carlo methods [87, 92], population Monte Carlo [9], expectation propagation
[7] and variational Bayes [94]. Of particular relevance to our work is the use
of MCMC within an ABC framework [57, 86]. As is standard in ABC methods,
ABC MCMC approaches are generally targeted at directed models where the
unobserved variables have a known marginal density pz but we can only generate
samples from the conditional distribution Px|z. If a Markov chain is constructed
on a (x, z) state pair with unique stationary distribution

Px,z|y(A, B |y) =
1

py(y)

∫
B

∫
A
pz(z) kε(y; x)Px|z(dx | z) dz (30)

then we can compute consistent MCMC estimators for (18) by computing averages
over the unobserved variable z components of the chain states.

The standard ABC MCMC approach [57] uses a Metropolis–Hastings scheme
which perturbatively updates the unobserved variables but independently re-
samples the observed variables. A new chain state (x∗, z∗) is proposed given
the current state (xs, zs) by sampling z∗ from a Markov kernel with density
q : Z ×Z → [0,∞) and then generating a new x∗ by sampling from Px|z(· |z∗).
With probability

α(x∗, z∗ |xs, zs) = min

{
1,
q(zs | z∗) pz(z∗) kε(y; x∗)

q(z∗ | zs) pz(zs) kε(y; xs)

}
, (31)

the proposed (x∗, z∗) pair is accepted such that (xs+1, zs+1) ← (x∗, z∗) oth-
erwise a rejection occurs and (xs+1, zs+1)← (xs, zs). The transition operator
defined by this process leaves (30) invariant, and under a suitable choice of
proposal density for the z updates will be aperiodic and irreducible and so have
(30) as its unique stationary distribution.

By making small changes to the unobserved variables z and so making use
of information from the previous state about plausible values for z under Px,z|y
rather than independently sampling them from Pz as in the simpler Monte Carlo
schemes, ABC MCMC can often increase efficiency in generative models with large
numbers of unobserved variables to infer [86]. This potential improved efficiency
comes at a cost of introducing the usual challenges associated with MCMC

methods compared to simpler Monte Carlo methods of dependence between
successive samples and the difficulty of assessing convergence.

Further ABC MCMC chains can be prone to ‘sticking’ pathologies - suffering
large series of rejections visible as the variables being stuck at a fixed value
in traces of the chain state. Though small moves are proposed to z, proposed
updates to the simulated observations x are sampled independently of the
previous simulated observations. Generally the conditional distribution Px|z,y,
i.e. describing the plausible values for x given the observed data and proposed
z values, will be much more concentrated than the distribution Px,z|y and so
proposing updates to x from the latter will often lead to proposed values for (x, z)
with a very low acceptance probability. The ABC MCMC Metropolis–Hastings
scheme is an instance of a pseudo-marginal MCMC method [10, 4] where such
sticking artifacts are a well known problem [65].

Graham and Storkey/Inference in differentiable generative models 14

8. Inference in the input space

To try to overcome some of the limitations of the standard ABC MCMC approach,
we now consider reparameterising the inference problem using the formulation of a
generative model as a deterministic transformation of random inputs introduced
in Definition 1 in Section 4. For a generative model (U ,F , pu, µ, gx, gz) for
observed variables x and unobserved variables z, the ABC posterior expectation
(18) can be reparameterised as

E[f(z) | y = y; ε] =
1

py(y)
E[f(z) kε(y; x)] (32)

=
1

py(y)
E[f(gz(u)) kε(y; gx(u))] (33)

=
1

py(y)

∫
U
f ◦ gz(u) kε(y; gx(u)) pu(u) du. (34)

Crucially this reparameterisation takes the form of an integral of a function
f ◦ gz against an explicit probability density

πε(u) =
1

py(y)
kε(y; gx(u)) pu(u), (35)

that we can evaluate up to an unknown normalising constant py(y). This is the
typical setting for approximate inference in (explicit) probabilistic models, and
so is amenable to applying standard variants of methods such as MCMC and
variational inference. In the common special case (and typical ABC setting) of a
directed generative model with a tractable marginal density on the unobserved
variables pz, using the notation introduced in Section 6 we have that

E[f(z) | y = y; ε] =
1

py(y)
E
[
f(z) kε

(
y; gx|z(z, u2)

)]
(36)

=
1

py(y)

∫
Z

∫
U2
f(z) kε

(
y; gx|z(z, u2)

)
pz(z)pu2(u2) du2 dz (37)

with now the explicit target density for inference being

πε(z,u2) =
1

py(y)
kε

(
y; gx|z(z, u2)

)
pz(z) pu2

(u2). (38)

This latter form is directly comparable to the reparameterisation suggested in
[67] for pseudo-marginal inference problems. There it is applied to construct a
MCMC method which uses slice sampling transition operators to iterate between
updating the unobserved variables z given random inputs u2 and vice versa.
For models in which the target density (35) is continuous with respect to both
arguments, the slice sampling updates will be almost surely move the state a
non-zero distance, therefore the chain will not ‘stick’. Related approaches using
Metropolis updates instead have also been proposed [24, 25].

Graham and Storkey/Inference in differentiable generative models 15

In reparameterising inference in terms of evaluating an integral over the input
space we have still so far required the definition of a kernel kε and tolerance ε,
with the integral being estimated the ABC posterior expectation E[f(z) | y, ε]
(18) rather than exact posterior expectation E[f(z) | x] we are directly interested
in. We now consider in the specific case of differentiable generative models how
to perform inference without introducing an ABC kernel.

We begin an initial intuition for the approach, by considering taking the limit
of ε → 0 in the integral (32) corresponding to evaluating the ABC posterior
expectation in the generator input space. We previously showed in (21) that the
approximate expectation E[f(z) | y = y; ε] converges as ε→ 0 to the conditional
expectation of interest E[f(z) | x = y], providing that the implicit distribution of
the observed variables in the generative model Px is absolutely continuous with
respect to the Lebesgue measure with density px. Informally for kernels meeting
the conditions (5) and (6), in the limit of ε→ 0 the kernel density kε(y; gx(u))
tends to a Dirac delta δ(y − gx(u)) and so

E[f(z) | x = y] = lim
ε→0

E[f(z) | y = y; ε] (39)

'
∫
U f ◦ gz(u) δ(y − gx(u)) pu(u) du∫

U δ(y − gx(u)) pu(u) du
. (40)

The Dirac delta term restricts the integral across the input space U to a Du−Dx
dimensional, implicitly-defined manifold corresponding to the fibre of y under
gx (i.e. the pre-image under gx of the singleton set {y}),

g−1x [y] ≡ {u ∈ U : gx(u) = y}. (41)

It is not necessarily immediately clear how to define the required probability
density on the manifold for arbitrary non-injective gx. In differentiable generative
models we can however use a derivation equivalent to that given by Diaconis,
Holmes and Shahshahani in [26] for conditional densities on a manifold to find an
expression for the conditional expectation consistent with definition given in (1).
The key result we use is Federer’s co-area formula [30, §3.2.12]. This generalises
Fubini’s theorem for iterated integrals on spaces defined by a Cartesian product
to more general foliations of a space.

Theorem 1 (Co-area formula): Let V ⊆ RL and W ⊆ RK with L ≥ K, and
let m : V → W be a Lipschitz function and h : V → R a Lebesgue measurable
function. Then∫

V
h(v) Jm(v)λL(dv) =

∫
W

∫
m−1[w]

h(v)HL−K(dv)λK(dw) (42)

with HL−K denoting the L−K-dimensional Hausdorff measure and Jm(v) de-
noting the generalised Jacobian determinant for ‘wide’ rectangular Jacobian
matrices

Jm(v) ≡
∣∣∣Jm(u)Jm(u)

T
∣∣∣ 12 . (43)

Graham and Storkey/Inference in differentiable generative models 16

More immediately applicable in our case is the following corollary.

Corollary 1: If Q is a probability measure on V with density q with respect to
the Lebesgue measure λL and Jm is full row-rank Q-almost everywhere, then for
Lebesgue measurable f : V → R∫

V
f (v) q(v)λL(dv) =∫
W

∫
m−1[w]

f (v) q(v) Jm(v)
−1HL−K(dv)λK(dw).

(44)

This can be shown by setting h(v) = f(v) q(v)Jm(v)
−1

in (42) and using the
equivalence of Lebesgue integrals in which the integrand differs only zero-measure
sets. We now show that distribution of the observed variables Px has a density
px with respect to the Lebesgue measure.

Proposition 1 (Change of variables in a differentiable generative model): For
a differentiable generative model (U ,F, pu, µ, gx, gz) as defined in Definition 2,
then if the generator gx is Lipschitz and the Jacobian Jgx

has full row-rank
Pu-almost everywhere, the observed vector x has a density with respect to the
Lebesgue measure satisfying

px(x) =

∫
g−1
x [x]

pu(u) Jgx
(u)
−1HDu−Dx(du) ∀x ∈ X . (45)

Proof. From Definitions 1 and 2 we have that x = gx(u) and dPu
dλDu = pu and so

Px(A) =

∫
U
IA(x)Px(dx) =

∫
U
IA ◦ gx(u) pu(u)λDu(du) ∀A ∈ G . (46)

As gx is Lipschitz and Jgx
has full row-rank Pu-almost everywhere we can apply

Corollary 1, and so we have that ∀A ∈ G

Px(A) =

∫
X

∫
g−1
x [x]

IA◦ gx(u) pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx). (47)

The term IA◦ gx(u) inside the inner integral is equal to IA(x) across all points
on the fibre g−1x [x] being integrated across and so can be taken outside the inner
integral to give

Px(A) =

∫
X
IA(x)

∫
g−1
x [x]

pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx) (48)

=

∫
A

∫
g−1
x [x]

pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx). (49)

By definition the density px of a probability measure Px with respect to the
Lebesgue measure λDx satisfies

Px(A) =

∫
A
px(x)λDx(dx) ∀A ∈ G (50)

∴ Px has a density corresponding to (45) with respect to λDx .

Graham and Storkey/Inference in differentiable generative models 17

This is a generalisation of the standard change of variables formula under a
diffeomorphism. We now derive a result for the conditional expectation.

Proposition 2 (Conditional expectations in a differentiable generative model):
For a differentiable generative model (U ,F, pu, µ, gx, gz) as defined in Definition
2 and satisfying the conditions in Proposition 1, then for Lebesgue measurable
functions f : X → R and x ∈ X such that px(x) > 0 we have that

E[f(z) | x = x] =
1

px(x)

∫
g−1
x [x]

f ◦ gz(u) pu(u) Jgx
(u)
−1HDu−Dx(du). (51)

Proof. From Definition 1 we have that x = gx(u) and z = gz(u) and so ∀A ∈ G∫
A×Z

f(z)Px,z(dx,dz) =

∫
X×Z

IA(x) f(z)Px,z(dx,dz) (52)

=

∫
U
IA ◦ gx(u) f ◦ gz(u) pu(u)λDu(du). (53)

Applying the co-area corollary (44) to the right-hand side and again noting
IA ◦ gx(u) is constant across the fibre being integrated on, we have that ∀A ∈ G∫

A×Z
f(z)Px,z(dx,dz) (54)

=

∫
X

∫
g−1
x [x]

IA ◦ gx(u) f ◦ gz(u) pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx) (55)

=

∫
X
IA(x)

∫
g−1
x [x]

f ◦ gz(u) pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx) (56)

=

∫
A

∫
g−1
x [x]

f ◦ gz(u) pu(u) Jgx
(u)
−1HDu−Dx(du)λDx(dx). (57)

Finally using that Px has a density px with respect to the Lebesgue measure as
shown in the previous proposition and so Px(dx) = px(x)λDx(dx), we have that∫

A×Z
f(z)Px,z(dx,dz) =∫
A

1

px(x)

∫
g−1
x [x]

f ◦ gz(u) pu(u) Jgx
(u)
−1HDu−Dx(du)Px(dx).

(58)

Here we ignore the points for which px(x) = 0 as the set of all such points has zero
measure under Px and so does not contribute to integrals against the probability
measure Px. Comparing to the definition of the conditional expectation (1) we
have that (51) satisfies the definition.

The expression derived for the conditional expectation has the form of an
integral of function f ◦ gz integrated against a density

π(u) =
1

px(x)
Jgx

(u)
−1 pu(u) (59)

Graham and Storkey/Inference in differentiable generative models 18

which we can evaluate up to an unknown normalising constant px(x). The key
complicating factor is that the integral is now not across a Euclidean space, but
an implicitly defined manifold corresponding to the fibre g−1x [x]. However if we
can construct a Markov transition operator which has an invariant distribution
with density (59) with respect to the Hausdorff measure on the manifold, then
we can use samples of the chain states {us}Ss=1 to compute an estimator

f̂S =
1

S

S∑
s=1

(f ◦ gz(us)) (60)

which providing the chain is also aperiodic and irreducible will be a consistent
estimator for E[f(z) | x = x]. Although constructing a Markov transition operator
with the required properties is non-trivial, there is a significant body of existing
work on methods for defining Markov chains on manifolds. We propose here to
use a constrained Hamiltonian Monte Carlo method.

9. Constrained Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [28, 68] is an auxiliary variable MCMC method
which exploits the gradient of the density of the target distribution. The vector
variable of interest, here the generator random inputs u ∈ RDu and that for the
purposes of this section we will refer to as the configuration state, is augmented
with a vector of auxiliary momentum variables p ∈ RDu . Typically the momenta
are specified to be independent of the configuration state with a zero mean
normal distribution with covariance M termed the mass matrix, i.e

pp(p) = N (p |0,M) ∝ exp

(
−1

2
pTM−1p

)
. (61)

The density π of the target distribution on the configuration state is used to
define a potential energy function φ : U → R

φ(u) = − log π(u)− logC ⇐⇒ π(u) =
1

C
exp(−φ(u)) (62)

with C a normalising constant, and similarly the quadratic form 1
2p

TM−1p
corresponding to the negative logarithm of the unnormalised density on the
momenta is termed the kinetic energy. The joint distribution on u and p then
has a density proportional to exp(−h(u,p)) where the Hamiltonian h(u,p) is

h(u,p) = φ(u) +
1

2
pTM−1p. (63)

The canonical Hamiltonian dynamic is then described by the system of ODEs

du

dt
=
∂h

∂p

T

= M−1p,
dp

dt
= − ∂h

∂u

T

= −∇φ(u). (64)

Graham and Storkey/Inference in differentiable generative models 19

This dynamic is time-reversible, volume-preserving and exactly conserves the
Hamiltonian. Symplectic integrators allow approximate integration of the Hamil-
tonian dynamic while maintaining the time-reversibility and volume-preservation
properties. Further subject to stability bounds on the time-step, symplectic
integrators will exactly conserve a ‘nearby’ Hamiltonian, and so the change in
the Hamiltonian will remain bounded even over long simulated trajectories [50].

These properties make simulated Hamiltonian dynamics an ideal proposal
mechanism for a Metropolis MCMC method. The Metropolis accept ratio for a
proposal (up, pp) generated by simulating the dynamic Ns time steps forward
from (u, p) with a symplectic integrator and then negating the momentum,
is simply exp

(
h(u, p)− h(up, pp)

)
. Typically the change in the Hamiltonian

will be small and so the probability of acceptance high. To ensure ergodicity,
simulated dynamic moves are interleaved with updates independently sampling
new momentum values from N (0,M).

In our case the target distribution on the configuration state u is defined on an
implicitly defined manifold embedded in a Euclidean space U = RDu . Intuitively
we can consider the manifold as representing the allowable configurations of
mechanical system subject to a constraint. By simulating a constrained Hamilto-
nian dynamic we can therefore construct a HMC transition operator analogous to
that just described but that generates chains on an implicitly defined manifold
rather than an unconstrained Euclidean space.

The use of constrained Hamiltonian dynamics within a MCMC method has been
proposed by multiple authors. In the molecular dynamics literature, Hartmann
and Schutte [41] and Lelièvre, Rousset and Stoltz [52] used simulated constrained
Hamiltonian dynamics within a HMC framework to estimate free-energy profiles
of molecular systems. Most relevantly for our case, Brubaker, Salzmann and
Urtasun [19] proposed a constrained HMC algorithm for performing inference in
target distributions defined on implicitly defined embedded manifolds. We will
concentrate on the algorithm proposed in [19] here.

To simplify notation and emphasise the generality of the approach beyond
our specific setting, we define the following notation for the vector constraint
function on the system and corresponding Jacobian

c(u) = gx(u)− x, Jc(u) = Jgx
(u). (65)

The constraint manifold is then defined as the zero level-set of c, in our case
corresponding to the fibre of x under the generator gx

C = {u ∈ RM : c(u) = 0} = g−1x [x]. (66)

Defining as previously the potential energy φ as the negative logarithm of
the unnormalised target density and the kinetic energy as a quadratic form
1
2p

TM−1p, the Hamiltonian for the constrained system can be written as

h(u,p) = φ(u) +
1

2
pTM−1p+ c(u)Tλ, (67)

where λ is a vector of Lagrangian multipliers for the constraints.

Graham and Storkey/Inference in differentiable generative models 20

The constrained Hamiltonian dynamic is then defined by

du

dt
=
∂h

∂p
= M−1p,

dp

dt
= − ∂h

∂u

T

= −∇φ(u)
T − Jc(u)

T
λ, (68)

with the Lagrange multipliers taking values to ensure the system constraints are
satisfied. In addition to the configuration constraint c(u) = 0 there is a corre-
sponding implied constraint on the momenta p requiring that the configuration
velocity M−1p is always tangential to the constraint manifold at the current
configuration, or equivalently that the momenta are in the tangent space to the
constraint manifold. The tangent space TuC at a configuration u is defined as

TuC =
{
p ∈ RM : Jc(u)M−1p = 0

}
. (69)

The complete set of valid configuration–momentum state pairs is termed the
tangent bundle T C of the constraint manifold and defined as

T C =
{
u,p ∈ RM × RM : c(u) = 0, Jc(u)M−1p = 0

}
. (70)

The solution at time t to the initial value problem defined by the ODEs (68)
defines a flow map γt : T C → T C between states in the tangent bundle
of the constraint manifold. As with the unconstrained Hamiltonian dynamics
encountered previously, this flow map exactly conserves the Hamiltonian and
is reversible under negation of the momenta. Further the flow map of the
constrained dynamic is symplectic and conserves the volume element of the
constraint manifold tangent bundle [50].

Importantly there exist symplectic integrators which can be used to approxi-
mate the constrained Hamiltonian dynamic flow map and which map between
states exactly in the constraint manifold tangent bundle (modulo numerical error
due to finite precision arithmetic). The approximate flow maps defined by these
integrators are reversible and conserve the tangent bundle volume element. They
also exhibit the bounded change in the Hamiltonian over simulated trajectories
discussed previously for the unconstrained case.

A popular symplectic numerical integrator for constrained Hamiltonian dy-
namics is the RATTLE method [3, 51]. This a generalisation of the Störmer–Verlet
or leapfrog integrator typically used to integrate the Hamiltonian dynamics in
standard HMC, with additional steps to project the states on to the tangent bun-
dle of the constraint manifold. A RATTLE step is composed of three component
maps. The first map is defined by

γ̂a
δt(u,p) =

(
u+ δtM−1(p− Jc(u)

T
λ), p− Jc(u)

T
λ
)

solving for λ such that c
(
u+ δtM−1(p− Jc(u)

T
λ)
)

= 0.
(71)

This defines an approximate geodesic step on the constraint manifold: the
configuration u is incremented in the direction of the current velocity M−1p and
then the new configuration state projected back on to the constraint manifold
by solving a non-linear system of equations for the Lagrange multipliers λ.

Graham and Storkey/Inference in differentiable generative models 21

The second component map updates the momenta with a ‘kick’ in the direction
of the potential energy gradient

γ̂b
δt(u,p) =

(
u, p− δt∇φ(u)

T
)
. (72)

Though both γ̂a
δt and γ̂b

δt steps will map between configurations in the constraint
manifold (trivially in the case of γ̂b

δt as the configurations are kept fixed), the
corresponding momenta will not be confined to the tangent spaces to the manifold.
The final component map projects the momenta in to the tangent space of the
constraint manifold at the current configuration. It is defined by

γ̂p(u,p) =
(
u, p− Jc(u)

T
λ
)

solving for λ such that Jc(u)M−1(p− Jc(u)
T
λ) = 0.

(73)

In this case the system of equation needing to be solved is linear and has an
analytic solution, giving the following closed-form definition

γ̂p(u,p) =
(
u, p− Jc(u)

T
(Jc(u)M−1Jc(u)

T
)−1Jc(u)M−1p

)
. (74)

An overall RATTLE step is then defined by the composition

γ̂r
δt = γ̂p ◦ γ̂b

δt
2
◦ γ̂p ◦ γ̂a

δt ◦ γ̂p ◦ γ̂b
δt
2
. (75)

In practice the intermediate momentum projection steps γ̂p are redundant [58]
and so typically the momentum is only projected back in to the tangent space
at the end of the step, giving the following update

γ̂r
δt = γ̂p ◦ γ̂b

δt
2
◦ γ̂a

δt ◦ γ̂b
δt
2
. (76)

Solving the non-linear constraint equations in the geodesic step γ̂a
δt is computa-

tionally challenging, with closed form solutions generally not available and so an
iterative approach required. Further the system of equations are not guaranteed
to have a unique solution: if the step size δt is too large there can be multiple or
no solutions [50]. It is important therefore to keep the step size small enough to
avoid the iterative solver converging to an incorrect solution or not converging at
all. Often the resulting step size will be smaller than required however in terms
of controlling the Hamiltonian error over a simulated trajectory. An alternative
to the standard RATTLE integrator is therefore to perform Ng > 1 inner geodesic
steps γ̂a

δt
Ng

for each outer pair of momentum kick steps γ̂b
δt
2

γ̂g
δt = γ̂p ◦ γ̂b

δt
2
◦
(
γ̂p ◦ γ̂a

δt
Ng

)Ng ◦ γ̂p ◦ γ̂b
δt
2
. (77)

This geodesic integrator [49, 48] scheme can reduce the number of potential energy
gradient evaluations required by using a larger step size for the momentum kick
updates while still maintaining a sufficiently small step size to avoid convergence
issues in the geodesic step.

Graham and Storkey/Inference in differentiable generative models 22

Assuming the iterative solving of the projections to constraint manifold in
the geodesic steps converge correctly, the approximate flow map defined by
iterating RATTLE or geodesic integrator steps preserves the volume element of
T C and is reversible under negation of the momenta. We can therefore use the
composition of the approximate flow map with a momentum reversal operator
to define a volume-preserving involution between states in T C. We can then use
this involution as a proposal generating mechanism for a Metropolis accept step
to correct for the Hamiltonian error in the approximate flow map.

As in the standard HMC algorithm, Metropolis updates with approximate
flow map proposals are interleaved with updates in which the momenta are
independently resampled. To ensure the momenta remain in the tangent space
TuC to the constraint manifold after generating new values from N (0,M), the
momenta are projected in to the tangent space using the projection operator
defined in (74). The overall constrained HMC transition operator defined by
this combination of momentum resampling and Metropolis accept step with a
constrained dynamic proposal, leaves invariant the distribution with negative log
density defined by the Hamiltonian in (67) on the constraint manifold tangent
bundle T C, and so marginally leaves the target distribution on C invariant.

Ensuring ergodicity of chains generated by the constrained HMC transition
operator is in general more challenging than for HMC on Euclidean spaces due
to the often complex geometry of the constraint manifold C and potential for
numerical issues in the projection steps. In [19] it is shown that if3

� C is a connected, smooth differentiable manifold,
� Jc has full row-rank everywhere,
� and π(u) ∝ exp(−φ(u)) is smooth and strictly positive on C

for a constrained HMC transition using an approximate flow map defined by
a symplectic integrator with step size δt, if the integrator step size δt is set
sufficiently small such that there is a unique solution to the choice of Lagrange
multipliers λ in each geodesic step (71) and the iterative method employed
converges to this solution in every step, that the overall transition operator will
be irreducible, aperiodic and leave the target distribution on C invariant.

These conditions put stricter requirements on the generator gx of a differen-
tiable generative model than those specified in Definition 2 and Proposition 2 if
we wish to use a constrained HMC method to estimate conditional expectations
under the model. The requirement that C = g−1x [x] is a smooth and connected
manifold is likely to be challenging to check for complex generators. If the fibre
of x under the generator gx consists of multiple disconnected components then
the constrained Hamiltonian dynamic will remain confined to just one of them.
Although problematic, this issue is similar to that faced by other MCMC methods
in target distributions with multiple separated modes. The requirement that
the Jacobian Jgx

is defined and full row-rank everywhere is also stricter than
previously required.

3We give only a loose statement of the full conditions here for brevity; for complete details
see Theorems 1 to 4 in [19].

Graham and Storkey/Inference in differentiable generative models 23

−4 −2 2 4

−4

−2

2

4

u1

u2

(a) g−1
x [1]

−4 −2
0

2
4 −4

−2

0

2

4

0

20

u1
u2

n
/
ε

(b) g−1
y [1]

Fig 2: Visualisations of the hyperbola fibre g−1x [1] of the generator gx defined in
(79) consisting of two disconnected components and the corresponding connected
hyperbolic paraboloid fibre g−1y [1] of the noisy generator.

If we define an augmented ‘noisy’ generator

gy(u,n) = gx(u) + εn (78)

with n ∼ N (0, I) and ε a small positive constant, then if gx is differentiable
everywhere then the Jacobian of the augmented generator Jgy

will be full row-
rank everywhere. Further in some cases the fibres under the noisy generator
g−1y [x] will be connected when the fibres under the original generator g−1x [x] are
not. As a simple example consider

gx(u) = u21 − u22, gx(u, n) = u21 − u22 + εn. (79)

The fibres g−1x [x] are hyperbola in R2, for x 6= 0 consisting of two disconnected
components as shown in Figure 2a. The fibres of g−1y [x] are connected hyperbolic

paraboloids in R3 as shown in Figure 2b.
This noisy augmentation of the generator corresponds to using an ABC ap-

proach with a Gaussian kernel with tolerance ε, and so we could instead perform
standard HMC in the ABC posterior density in the generator input space (35).
The potential energy function corresponding to (35) in this case is

φ(u) =
1

2ε2
(x− gx(u))

T
(x− gx(u))− log pu(u), (80)

The energy function combines a term favouring inputs u which generate outputs
close to the observed data x and prior term favouring input values which are
plausible under Pu. Typically the input density pu will have a simple form e.g.
standard normal N (u |0, I) in which case the main complexity in the target
density arises from the term due to the Gaussian kernel kε and generator function
gx; this term puts high density on inputs close to the fibre g−1x [x] of the observed
data x under the generator function gx. For small ε this will mean the distribution

Graham and Storkey/Inference in differentiable generative models 24

Fig 3: Illustration of oscillatory behaviour in HMC trajectories when using an
ABC posterior density (35) in the input space to a generative model. The left
axis shows the two-dimensional input space U of a differentiable generative
model with a Gaussian input density pu (green shading). The dashed curve
shows the one-dimensional manifold corresponding to the pre-image under the
generator function gx of an observed output x. The right axis shows the same
input space with now the green shading showing the density proportional to
kε(x; gx(u)) pu(u) with a Gaussian kε. The red curve shows a corresponding
simulated HMC trajectory: the large magnitude density gradients normal to
the manifold cause high-frequency oscillations and slows movement along the
manifold (which corresponds to variation in the latent variable z).

in the input space is increasingly tightly concentrated in a narrow ‘ridge’ around
the manifold embedded in the input space corresponding to g−1x [x]. Although
the gradient-based Hamiltonian dynamic is able to propose moves which remain
within this high-density region, the strong gradients normal to the manifold
tends to produce trajectories which oscillate back and forth across the ridge,
limiting the motion tangential to the manifold and requiring a small integrator
step-size for stability; this is illustrated in a simple model with a two dimensional
input space in Figure 3. In some cases (examples of which will be shown in the
numerical experiments in Section 12) applying constrained HMC with the noisy
generator gy can therefore be more efficient than running standard HMC in the
ABC target density, despite the much higher per-step costs, as constrained HMC

updates are able to use a much larger integrator step size when using small ε.
Riemannian manifold Hamiltonian Monte Carlo (RMHMC) [37] extends the

standard HMC algorithm by introducing momenta with a configuration-dependent
covariance matrix G : RDu → RDu×Du , typically termed the metric. The metric,
which is required to be positive-definite almost-everywhere in the configuration
space, is able to condition the momenta to adjust for locally varying curvature in
the target density, potentially significantly improving the ability of the simulated
Hamiltonian dynamic to explore the configuration space. An alternative approach
to remedying the issues with performing standard HMC in the generator input
space is therefore to apply a RMHMC algorithm using a metric exploiting the

Graham and Storkey/Inference in differentiable generative models 25

geometry of the target density to improve the behaviour of the simulated dynamic.
For example the metric

G(u) =
1

ε2
Jgx

(u)TJgx
(u) + I (81)

is positive definite everywhere and equal to the Hessian of the potential energy
(80) for u ∈ g−1x [x]. Using this metric, for small ε and inputs u generating
outputs close to the data x i.e. small values of 1

ε ‖gx(u)− x‖2, the velocity in

the RMHMC dynamic du
dt = G(u)−1p will tend to be higher along the directions

tangential to the fibre g−1x [x], reducing the tendency for the dynamic to oscillate
normal to the fibre. RMHMC requires use of a computationally costly implicit
integrator due to the non-separable Hamiltonian and so like the constrained
HMC method proposed here has a significantly higher computational cost per
sample than the standard HMC algorithm. However as with constrained HMC

the potential for improved exploration of the space for small ε may compensate
for the more costly updates. We do not explore this idea further here but it may
be an interesting avenue for future work.

Geodesic Monte Carlo [20] also considers applying a HMC scheme to sample
from non-linear manifolds embedded in a Euclidean space. Similarly to [19]
however the motivation is performing inference with respect to distributions
explicitly defined on a manifold such as directional statistics. The method
presented in [20] uses an exact solution for the geodesic flow on the manifold. The
use of a geodesic integration scheme within a constrained HMC update as discussed
here can be considered an extension for cases when an exact geodesic solution is
not available. Instead the geodesic flow is approximately simulated while still
maintaining the required volume-preservation and reversibility properties for
validity of the overall HMC scheme.

An alternative Metropolis method for sampling from densities defined on
manifolds embedded in a Euclidean space is proposed in [100]. Compared to
constrained HMC this alleviates the requirements to calculate the gradient of (the
logarithm of) the target density on the manifold, though still requires evaluation
of the constraint function Jacobian. As discussed in Section 4, using reverse-mode
AD the gradient of the target density can be computed at a cost proportional to
evaluation of the target density itself. In general we would expect exploiting the
gradient of the target density on the manifold within a simulated Hamiltonian
dynamic to lead to more coherent exploration of the target distribution, instead
of the more random-walk behaviour of a non-gradient based Metropolis update,
and so for the gradient evaluation overhead to be worthwhile.

There is extensive theoretical discussion of the issues involved in sampling
from distributions defined on manifolds in [26], including a derivation of condi-
tional densities on a manifold using the co-area formula which directly motivated
our earlier derivations of expressions for conditional expectations under a dif-
ferentiable generative model. The experiments in [26] are mainly concentrated
on expository examples using simple parameterised manifolds such as a torus
embedded in R3 and conditional testing in exponential family distributions.

Graham and Storkey/Inference in differentiable generative models 26

Algorithm 1 Constrained HMC in a differentiable generative model

Input:
gx : observed variable generator function;
φ : potential energy function φ(u) = − log pu(u) + 1

2
log |Jgx(u)Jgx(u)|;

x : observed data values being conditioned on;
u : current chain state (model inputs) with ‖gx(u)− x‖∞ < ε;
(ϕ,J ,L) : cached values of φ, Jgx and chol

(
JgxJgx

T) evaluated at u;
ε : convergence tolerance for Newton iteration;
I : number of Newton iterations to try before rejecting for non-convergence;
δt : integrator time step; Ns : number of time steps to simulate;
Ng : number of geodesic steps per time step.

Output:
un : new chain state with ‖gx(un)− x‖∞ < ε;
(ϕn,Jn,Ln) : values of φ, Jgx and chol

(
JgxJgx

T) evaluated at new un.

1: n ∼ N (0, I)
2: p← ProjectMom(n,J ,L)
3: up,pp,Jp,Lp ← SimDyn(u,p,J ,L)
4: ϕp ← φ(u)
5: r ∼ U(0, 1)
6: pa ← exp

(
ϕ+ 1

2
pTp− ϕp − 1

2
pTppp

)
7: if r < pa
8: un, ϕn,Jn,Ln ← up, ϕp,Jp,Lp

9: else
10: un, ϕn,Jn,Ln ← u, ϕ,J ,L

11:

12: function SimDyn(u, p, J , L)
13: p̃← p− δt

2
∇φ(u)T

14: p← ProjectMom(p̃,J ,L)
15: u,p,J ,L← SimGeo(u,p,J ,L)
16: for s ∈ {2 . . . Ns}
17: p̃← p− δt∇φ(u)T

18: p← ProjectMom(p̃,J ,L)
19: u,p,J ,L← SimGeo(u,p,J ,L)

20: p̃← p− δt
2
∇φ(u)T

21: p← ProjectMom(p̃,J ,L)
22: return u,p,J ,L

23:

24: function ProjectMom(p, J , L)
25: return p− JTL−TL−1Jp

26: function ProjectPos(u, J , L)
27: δ ← gx(u)− x
28: i← 0
29: while ‖δ‖∞ > ε and i < I
30: u← u− JTL−TL−1δ
31: δ ← gx(u)− x
32: i← i+ 1

33: if i = I
34: raise RejectMove
35: return u
36:

37: function SimGeo(u, p, J , L)
38: for i ∈ {1 . . . Ng}
39: ũ← u+ δt

Ng
p

40: u′ ← ProjectPos(ũ,J ,L)
41: J ← Jgx(u

′)
42: L← chol

(
JJT)

43: p̃← Ng
δt

(u′ − u)
44: p← ProjectMom(p̃,J ,L)
45: ur ← u′ − δt

Ng
p

46: ur ← ProjectPos(ur,J ,L)
47: if ‖u− ur‖∞ >

√
ε

48: raise RejectMove
49: u← u′

50: return u,p,J ,L

10. Implementation details

The constrained HMC implementation we propose for performing inference in
differentiable generative models is shown in Algorithm 1. This algorithm differs
in some details from that proposed [19] and we discuss these differences and
computational issues specific to our setting in the following subsections.

Graham and Storkey/Inference in differentiable generative models 27

10.1. Iterative solver for projection on to manifold

Rather than the RATTLE integrator used in [19], we use the geodesic integrator
generalisation discussed in the previous section to simulate the constrained
dynamic. This gives increased flexibility in balancing the need for an appropriately
small step-size to ensure convergence of the iterative solution of the equations
projecting on to the constraint manifold and using a more efficient larger step size
for updates to the momentum due to the potential energy gradient. We assume
M = I here; other mass matrix choices can be implemented by reparameterising
the model with an initial linear transformation stage in the generator.

The projection on to the constraint manifold in the geodesic steps is performed
in the function ProjectPos in Algorithm 1. We use a quasi-Newton method
for solving for λ the system of equations gx(u + (δt/Ng)p − JTλ) = x where
J = Jgx

(u). Expressing directly in terms of the configuration state u rather than
the Lagrange multipliers, the full Newton update would be

u′ ← u′ − JT(Jgx
(u′)JT)−1(gx(u

′)− x). (82)

This requires recalculating the Jacobian and solving a dense linear system
within the optimisation loop. Instead as proposed in [6] we use a symmetric
quasi-Newton update,

u′ ← u′ − JT(JJT)−1(gx(u
′)− x). (83)

The Jacobian product JJT is used to condition the moves. This matrix is positive-
definite and a Cholesky decomposition can be calculated outside the optimisation
loop allowing cheaper quadratic cost solves within the loop.

Convergence of the quasi-Newton iteration is signalled when the maximum
absolute difference between the generated observed variables and the observed
data is below a tolerance ε, i.e. ‖gx(u)−x‖∞ < ε. The tolerance is analogous to
the ε parameter in ABC methods, however here we can set this value close to
machine precision (ε = 10−8 in the experiments here) and so the error introduced
is comparable to that otherwise incurred for using non-exact arithmetic.

In some cases the quasi-Newton iteration will fail to converge. We use a fixed
upper limit on the number of iterations and reject the move (line 34 in Algorithm
1) if convergence is not achieved within this limit. To ensure reversibility, once
we have solved for a forward geodesic step on the manifold in SimGeo, we then
check if the corresponding reverse step (with the momentum negated) returns to
the original position and reject if not. This involves running a second Newton
iteration, though as it reuses the same Jacobian J and Cholesky factor L, the
evaluation of which tend to be the dominant costs in the algorithm, we found
the overhead introduced tended to be quite small (around a 20% increase in
run-time compared to only performing the forward step). A similar scheme for
ensuring reversibility is proposed in [100].

The square root of the tolerance ε used for the Newton convergence check in
the output space of generator (line 29 in Algorithm 1) is used for the reverse-step

Graham and Storkey/Inference in differentiable generative models 28

z

gzu1
pu1

xi

gxi|zu2,i
pu2,i

i ∈ {1 ... N}

(a) Independent xi

z

gzu1
pu1

u2,1

pu2,1

f1

x0
f0

u2,0

pu2,0

x1
f2

u2,2

pu2,2

x2
fT

u2,T

pu2,T

xT

(b) Markovian xi

Fig 4: Factor graphs of examples of structured directed generative models.

check on the inputs (line 48 in Algorithm 1) based on standard recommendations
for checking convergence in optimisation routines [22]. In the implementation
used in the experiments, we fall back to a minpack [63] implementation of
Powell’s Hybrid method [76] if the quasi-Newton iteration fails to converge, with
a rejection then only occurring if both iterative solvers fail. In practice we found
if the step size δt and number of geodesic steps Ng are chosen appropriately
then rejections due to non-convergence or non-reversible steps occur rarely.

10.2. Exploiting model structure

For larger systems, the Cholesky decomposition of the Jacobian matrix product
Jgx

Jgx
T (line 42) will become a dominant cost, generally scaling cubically with

Dx. In many models however conditional independency structure will mean that
not all observed variables x are dependent on all of the input variables u and so
the Jacobian Jgx

has a sparse structure which can be exploited to reduce this
worst-case cost. In particular two common cases are directed generative models
in which the observed variables x can be split into groups {xi}Gi=1 such that all of
the xi are either conditionally independent given the latent variables z = gz(u1)
(for example a model for a independent and identically distributed (IID) dataset),
or each xi is conditionally independent of all {xj}j<i−1 given xi−1 and z (most
commonly Markov chains for example from simulation of a SDE model, though
more general tree structured dependencies can also be ordered into this form).

Figure 4 shows factor graphs for directed generative models with these two
structures, with the conditional independencies corresponding to each xi being
generated as a function of only a subset u2,i of the random input variables u2.
We assume here each xi vector has the same dimensionality as the corresponding
random input vector u2,i. For models with these structures the generator Jacobian

Jgx
=

[
∂gx
∂u1

∣∣∣∣ ∂gx∂u2

]
(84)

Graham and Storkey/Inference in differentiable generative models 29

has a component ∂gx/∂u2 which is either block-diagonal (independent) or block-
triangular (Markovian). Considering first the simplest case where each (xi,u2,i)
pair are single dimensional, the Cholesky decomposition of

Jgx
Jgx

T =
∂gx
∂u1

∂gx
∂u1

T

+
∂gx
∂u2

∂gx
∂u2

T

(85)

can then be computed by low-rank Cholesky updates of the triangular or diagonal
matrix ∂gx/∂u2 with each of the columns of ∂gx/∂u1. As dim(u1) = L is often
significantly less than the number of observations being conditioned on Dx,
the resulting O(LD2

x) cost of the low-rank Cholesky updates is a significant
improvement over the original O(D3

x).
For cases in which each (xi,u2,i) pair are both vectors of dimension D and

so ∂gx/∂u2 is block diagonal or triangular, then the Cholesky factorisation of
(∂gx/∂u2)(∂gx/∂u2)T can be computed at a cost O(GD3) for block diagonal, and
O(G2D3) for block triangular ∂gx/∂u2, with then again O(LD2

x) cost low-rank
updates of this Cholesky factor by the columns of ∂gx/∂u1 performed.

10.3. Efficiently evaluating the potential energy and gradient

The Metropolis accept step and momentum updates in the SimDyn routine
require evaluating the potential energy corresponding to (59) and its gradient
respectively. Although this can by achieved by directly using the expression given
in (59) (and applying reverse-mode AD to get the gradient), both the potential
energy and its gradient can be more efficiently calculated by reusing the Cholesky
decomposition of the constraint Jacobian Gram matrix computed in line 42.

Dropping the dependence of the Jacobian on u for brevity we have that the
potential energy φ corresponding to the negative logarithm of the unnormalised
target density on the manifold (59) is

φ(u) =
1

2
log
∣∣Jgx

Jgx
T
∣∣− log pu(u) (86)

In general evaluating the determinant |Jgx
Jgx

T| has computational cost which
scales as O(DuD

2
x). However the lower-triangular Cholesky decomposition L of

Jgx
Jgx

T is already calculated in the SimGeo routine in Algorithm 1. Using basic
properties of the matrix determinant

φ(u) =

Dx∑
i=1

log(Lii)− log pu(u). (87)

Given the Cholesky factor L we can therefore can evaluate the potential energy
φ at a marginal computational cost that scales linearly with Dx. For the gradient
we can use reverse-mode AD to calculate the derivative of (87) with respect to
u. This requires propagating derivatives through the Cholesky decomposition
[64]; implementations for this are present in many AD frameworks.

Graham and Storkey/Inference in differentiable generative models 30

Alternatively using the standard result for the derivative of a log determinant
and the invariance of the trace to cyclic permutations we have that the gradient
of the log determinant term in (86) can be manipulated in to the form

1

2

∂

∂ui
log
∣∣Jgx

Jgx
T
∣∣ = trace

(
Jgx

T(Jgx
Jgx

T)−1 ∂Jgx

∂ui

)
(88)

We denote the matrix vectorisation operator vec such that for a M×N matrix A,
we have vec(A) = [A1,1, . . . , AM,1, A1,2, . . . , AN,M]

T
. Then as the trace of a ma-

trix product defines an inner product we have that trace(AB) = vec(A)Tvec(B).
We can therefore write the gradient of the log determinant term as

1

2

∂

∂u
log
∣∣Jgx

Jgx
T
∣∣ = vec

(
Jgx

T(Jgx
Jgx

T)−1)T ∂vec
(
Jgx

)
∂u

(89)

The matrix inside the left vec operator can be computed once by reusing
the Cholesky factorisation of Jgx

Jgx
T to solve the system of equations by for-

ward and backward substitution. We then have an expression in the form of a
vector-Jacobian product which is provided as an efficient primitive in many AD

frameworks, e.g. as Lop in Theano, and like the gradient (which is actually a
special case) can be evaluated at cost which is a constant over head of evaluating
the forward function (i.e. the cost of evaluating Jgx

here).

10.4. Initialising the state

A final implementation detail is the requirement to find an initial u satisfying
gx(u) = x to initialise the chain at. In directed generative models with one
of the structures described in Section 10.2, a method we found worked well in
the experiments was to sample a u1, u2 pair from Pu and then keeping the
u1 values fixed, solve gx|z(gz(u1), u2) = x for u2 using for example Newton’s

method or by directly minimising the Euclidean norm ‖gx(gz(u1), u2) − x‖22
with respect to u2 by gradient descent. In more general cases one strategy is
to randomly sample affine subspaces by generating a Du ×Dx matrix P and
Du dimensional vector b and then attempt to find any intersections with the
manifold by iteratively solving gx(Pv + b) for v, sampling a new subspace if no
roots are found.

11. Related work

Several related approaches to applying gradient-based Monte Carlo inference
methods within a ABC setting have been proposed. The pseudo-marginal HMC

algorithm of [53] is particularly closely related to our approach, the authors
proposing use of a HMC transition operator to jointly update the target variables
z being inferred and auxiliary random input variables u2 used in computing the
density estimate in pseudo-marginal inference problems. The authors discuss
the specific relevance of their approach to an ABC setting, though formulate

Graham and Storkey/Inference in differentiable generative models 31

the method in terms of the wider context of the pseudo-marginal framework for
MCMC inference using an unbiased density estimator [4].

Compared to the suggestion in Section 8 to directly apply a standard HMC

transition operator to the ABC posterior density in the input space (35), the
method proposed in [53] assumes extra structure in the models considered. Specif-
ically the auxiliary random inputs u2 are assumed to marginally be independent
standard normal variables, with this additional structure leveraged in a more
efficient symplectic integrator compared to the standard leapfrog method that
gives improved scaling to problems where the dimensionality of the auxiliary
random inputs u2 is high.

Unlike the constrained HMC approach suggested here, the pseudo-marginal
HMC method still requires use of a non-zero ε tolerance in ABC inference problems,
and the complex ‘narrow-ridge’ geometry typical of the ABC posterior densities
in the input space will often require use of a small integrator step-size as
illustrated in Figure 3. This limits the gains in sampling efficiency from using a
gradient-based approach and in the experiments of [53] it was found the proposed
pseudo-marginal HMC method performed comparably to using non gradient-
based elliptical slice sampling [66] updates to the target variables z and auxiliary
random input variables u2 as proposed in [67].

Hamiltonian ABC [60], also proposes applying HMC to perform inference
in simulator models. Rather than using reverse-mode AD to exactly calculate
gradients of the generator function, Hamiltonian ABC uses a stochastic gradient
estimator calculated using a simultaneous perturbation stochastic approxima-
tion (SPSA) scheme [88]. This is based on previous work considering methods
for using a stochastic gradients within HMC [97, 21]. It has been suggested
however that the use of stochastic gradients can compromise the favourable
properties of Hamiltonian dynamics which enable coherent exploration of high
dimensional state spaces [12]. The approach proposed in [60] also differs from
that discussed in this paper in using a synthetic likelihood based ABC method [99]
as opposed to the kernel-based formulation used here and described in Section 7.
The synthetic likelihood method generates multiple simulated observed variables
x for each evaluation of the approximated posterior density, using the empirical
mean and standard deviation estimates of the set of simulated observations
given the current unobserved variables z to fit a ‘synthetic’ normal model for
the conditional density px|z (the likelihood). In [60] this is motivated by the
observation that SPSA estimates of the gradients of the synthetic likelihood
ABC posterior density are lower variance than the corresponding SPSA gradient
estimator for a kernel-based ABC posterior density, albeit at the introduction of
further bias compared to the gradients of the exact posterior density of interest.

The authors of Hamiltonian ABC also observe that representing the generative
model as a deterministic function by fixing the random inputs to the generator is
a useful method for improving exploration of the state space. This is achieved by
including the state of the PRNG in the chain state however rather than directly
updating the random inputs. As pointed out by the authors, this formulation
puts minimal requirements on the model implementation with most numerical
computing libraries having some facility to control the internal state of the PRNG

Graham and Storkey/Inference in differentiable generative models 32

being used, simplifying the application of the method with existing legacy code.
In comparison the approach we propose will generally require some re-coding in
a framework supporting reverse-mode AD and explicitly enumerating the random
inputs used in the generator code.

Also related is Optimization Monte Carlo [61]. The authors propose using an
optimiser to find parameters of a simulator model consistent with observed data
(to within some tolerance ε) given fixed random inputs sampled independently.
The optimisation is not volume-preserving and so the Jacobian of the map
is approximated with finite differences to weight the samples. Our proposed
constrained HMC method also uses an optimiser to find inputs consistent with the
observations, however by using a volume-preserving dynamic we avoid having to
re-weight samples. Our method also differs in treating all inputs to a generator
equivalently; while the Optimization Monte Carlo authors similarly identify the
simulator models as deterministic functions they distinguish between parameters
and random inputs, optimising the first and independently sampling the latter.
This can lead to random inputs being sampled for which no parameters can
be found consistent with the observations (even with a within ε constraint).
Although optimisation failure is also potentially an issue for our method, we
found this occurred rarely in practice if an appropriate step size is chosen.

12. Numerical experiments

To evaluate the performance of the MCMC methods proposed in Sections 8 and
9 we performed inference experiments with three implicit generative models: a
quantile distribution model for an IID dataset, a Lotka–Volterra predator-prey
SDE simulator model, and a differentiable generator network model for human
poses. In all experiments Theano [91], a Python computation graph framework
providing reverse-mode AD, was used to specify the generator functions and
compute derivatives. All experiments were run on a Intel Core i5-2400 quad-core
CPU. Python code for the experiments is available at https://git.io/dgm.

12.1. Quantile distribution inference

As a first example we consider inferring the parameters of quantile distribution
model for a IID dataset of univariate values. The generalised Tukey lambda
distribution [80, 31] is a four parameter family of distributions defined via its
quantile function. It has very flexible form which can describe distributions with a
range of shapes, including close approximations of standard distributions such as
the normal but also allowing asymmetric distributions with more general skewness
and kurtosis. This flexibility has supported it use for statistical modelling in a
diverse range of settings, including for example finance [23], climatology [69],
control engineering [70] and material science [15].

Using the inverse CDF transform method it is simple to generate samples given
a quantile function by mapping standard uniform samples through the quantile
function. The quantile function does not have an analytic inverse however so the

https://git.io/dgm

Graham and Storkey/Inference in differentiable generative models 33

5 10 15 20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

D
en

si
ty

Fig 5: Histogram of generated generalised lambda distribution dataset used
in experiments with N = 250 points generated using the quantile function
parameterisation in (90) with parameters z1 = 5, z2 = 1, z3 = 0.4 and z4 = −0.1.
The light orange region shows the histogram of the generated data with the
orange ticks along the x axis indicating the actual data points. The green curve
shows a kernel density estimate of the density of the distribution using a separate
set of 10 000 independent samples.

CDF and corresponding density function do not have explicit forms. The use of
ABC to perform Bayesian inference using quantile distributions was suggested by
Allingham, King and Mengersen [2], with they employing a pseudo-marginal ABC

MCMC approach based on order statistics of the observation in their experiments.
McVinish [59] proposed a more efficient ‘modified’ ABC MCMC scheme specifically
tailored to quantile distributions, with interval bisection used to identify an
efficient proposal distribution for updates to the auxiliary uniform variables
mapped through the quantile function.

We follow [59] in parameterising the quantile function of the generalised
lambda distribution as

qgl(p | z) = z1 +
1

z2

(
pz3 − 1

z3
+

(1− p)z4 − 1

z4

)
, (90)

with z1 a location parameter, z2 a positive scale parameter and z3 and z4
shape parameters. In the experiments in [59], a synthetic dataset x of N = 250
independent samples is generated from a generalised lambda distribution using
the quantile function (90) with parameters z1 = 5, z2 = 1, z3 = 0.4 and z4 = −0.1.
The task considered in [59] is then inferring the posterior distribution on the
parameters z given observed (synthetic) data x.

A prior density on z is defined as

pz(z) = λ exp(−λz2)I[0,∞)(z2)N
(
z1 | 0, σ2

)
N
(
z3 | 0, σ2

)
N
(
z4 | 0, σ2

)
(91)

corresponding to independent normal priors on each of the location and shape
parameters and an exponential prior on the location parameter. In the experi-
ments in [59] the prior hyperparameters are chosen as σ = 10 and λ = 1/10. In
[59] the proposed modified ABC MCMC algorithm is compared to a standard ABC

MCMC approach and a population Monte Carlo ABC method [9]. The proposed

Graham and Storkey/Inference in differentiable generative models 34

modified ABC MCMC algorithm was found to significantly outperform the other
two approaches, and so we focus on comparing to this method.

We compare a Cython [11] implementation of the modified ABC MCMC algo-
rithm to two of the algorithms discussed in previous sections: an ABC approach
with a Gaussian kernel kε, running HMC in the input space to a differentiable
generator for the model as discussed in Section 8; the constrained HMC method
described in Algorithm 1, conditioning the output of a differentiable generator
to be exactly equal to observed data. As in [59] we use N = 250 generated data
points using the parameters z = [5, 1, 0.4, −0.1]T with the generated data used
in our experiments shown in Figure 5.

We formulate the quantile distribution model as a directed differentiable
generative model as follows. We define a generator gz for the parameters z by

function gz(u1)
z1 ← σu1,1
z3 ← σu1,2
z4 ← σu1,3
z2 ← 1

λ
log

(
1 + exp

(
π√
3
u1,4

))
return [z1, z2, z3, z4]T

Here the input variables u1,1, u1,2 and u1,3 are assumed to have independent
standard normal distributions N (0, 1). The input variable u1,4, which maps to
the scale parameter z2, has a zero-mean and unit-variance logistic distribution

pu1,4
(u1,4) =

π

4
√

3
cosh

(
πu1,4

2
√

3

)−2
. (92)

Given a vector of inputs u1 with these distributions, gz outputs a parameter
vector z distributed according to the prior density (91).

The generator for the observed variables x given the parameters z and addi-
tional random inputs u2 is then specified by

function gx|z(z, u2)
for n ∈ {1 . . . N}

pn ←
(

1 + exp
(
− π√

3
u2,n

))−1

xn ← qgl(pn | z)

return [x1, x2, . . . , xN]T

Here the input variables u2 have independent zero-mean and unit-variance logistic
distributions with density as in (92). These are transformed to standard uni-
form variables via a logistic sigmoid function, with these uniform variables then
mapped through the quantile function to generate values from the generalised
lambda quantile distribution given the provided parameter values z.

As the generated observed variables x are conditionally independent given
the parameters z, the Jacobian of the overall generator gx(u) = gx|z(gz(u1),u2)
has the block structure discussed in Section 10.2, with a dense matrix block

Graham and Storkey/Inference in differentiable generative models 35

corresponding to the partial derivatives of the generated x with respect to the
inputs u1 mapping to parameters, and a diagonal matrix block corresponding
to the partial derivatives of the generated x with respect to the inputs u2. As
described in Section 10.2 this allows efficient computation of the Jacobian product
Cholesky factor in the constrained HMC algorithm.

The modified ABC MCMC method uses a proposal kernel to generate updates
to the parameters z which are then accepted or rejected in a Metropolis–Hastings
step. We follow the experiments of [59] and use a uniform random-walk proposal
density U(z′ | z − s, z + s) where s is a step-size parameter, which was tuned to
give an average accept rate of approximately 0.25 in pilot runs, with s = 0.075
used in our experiments. The interval bisection method used to construct the
proposed updates to the auxiliary uniform variables has a free parameter m
defining the number of bisection iterations; following the experiments of [59]
we use m = 16. The ABC kernel used in the modified ABC MCMC algorithm is
uniform across a cubic region specified by an infinity norm tolerance

kε(y |x) =
1

εD
I[0,ε](‖y − x‖∞) =

1

εD

D∏
d=1

I[0,ε](|yi − xi|) (93)

with the product decomposition of this kernel being central to the proposed
efficient update to the auxiliary variables in [59]. We follow [59] in using a
tolerance of ε = 0.1 in the experiments.

In pilot runs with the modified ABC MCMC algorithm, we found that when
initialising chains from the normal–exponential prior (91) with hyperparameters
σ = 10 and λ = 1/10, that some chains failed to converge, remaining at the initial
state for long series of rejections even with very small step sizes and in some
cases failing completely due to numerical overflow. By generating additional
synthetic datasets using parameters sampled from a prior with σ = 10 and
λ = 1/10 it was found that this prior choice put significant mass on settings
leading to very extreme sampled values and in some cases producing values
beyond the maximum range of double precision floating point. As such extreme
variation in the target distribution seem implausible a-priori, we use a more
informative choice of prior in our experiments with σ = λ = 1, with this choice
giving a more plausible range of variation for simulated datasets. We found the
regularisation provided by this choice to significantly improve the stability of all
the methods tested while having a negligible impact on the inferred posteriors.

For all the approaches tested, the chains for the parameter values z, or
correspondingly the input variables u1 in the case of the methods parameterised
in the generator input space, were initialised from values sampled from the prior,
with the same 5 independently sampled initial states used for all chains. For the
constrained HMC chains, the initial states of the remaining u2 input variables
were set by using an optimisation routine to solve for values of these variables
giving generated observed outputs within an maximum elementwise distance of
10−8 of the observed data values. These same optimised u2 initial states were
also used for the unconstrained HMC chains. This optimisation was a negligible
overhead (less than one second) and so not included in the run time estimates.

Graham and Storkey/Inference in differentiable generative models 36

For the constrained HMC chains we used an integrator step size δt = 0.6 and
Ng = 4 inner geodesic steps per overall time step. These values were chosen
based on pilot runs to give an average accept rate in the range 0.6 to 0.9 [13]
and to minimise the occurrence of any rejections due to non-reversible geodesic
steps or convergence failure in the iterative solver. The number of integrator
steps Ns for each constrained HMC update was uniformly sampled from [5, 10].

For the unconstrained HMC chains using a Gaussian kernel ABC target density
in the generator input space (35), we ran sets of chains for ε = 0.25 and ε = 0.05
(due to the different kernel from that used in the modified ABC MCMC method
the tolerance values cannot be directly compared between the two methods).
For ε = 0.25 we used a integrator step size δt = 2.5 × 10−3 and for ε = 0.05,
δt = 5× 10−4, again chosen based on trying to achieve a target accept rate in
[0.6, 0.9]. We found however that the sensitivity of the stability of the updates
to δt made it challenging to meet this requirement, with values for δt giving
reasonable accept rates below 0.9 for some chains leading to other having very
low accept rates, and so the chosen δt values gave accept rates closer to 0.95
in most cases. We sampled the number of leapfrog steps L for each update
uniformly from [20, 40] for the ε = 0.25 chains and [40, 80] for the ε = 0.05 chains;
these values were chosen relatively arbitrarily and performance could likely be
improved by tuning these values or using the adaptive NUTS algorithm [43].

For all chains we ran initial warm-up phases which were excluded from the
later estimates to allow for convergence to the posterior typical set and reduce the
estimator bias. The number of warm-up iterations for each chain was hand-tuned
based on visualising traces of the chains and setting the number of warm-up
iterations to remove any obvious initial transient behaviour in the chains. For the
constrained and unconstrained HMC chains we found it helped stability to use a
smaller integrator step size and fewer integrator steps in the warm-up phase. The
initial states have atypically high potential energy and so the momenta quickly
grow large in the simulated dynamics in the early chain iterations, in some cases
leading to stability issues with the step size. Using a smaller initial step size and
smaller number of integration steps and so more frequent momentum resampling
operations where the momenta are restored to values with more reasonable
magnitudes helps to alleviate this issue.

We used δt = 0.05 and Ns = 2 in 200 warm up iterations for each constrained
HMC chain; δt = 10−3, L = 10 for 1000 warm up iterations for each ε = 0.25
HMC chain; and δt = 2.5× 10−4 and L = 20 for 5000 warm up iterations for each
ε = 0.05 HMC chain. For the modified ABC MCMC chains we used 5000 warm up
iterations (using the same s = 0.075 step size as in the main runs). We ran the
main sampling phase for 1000 iterations for the constrained HMC chains, 30 000
iterations for the ε = 0.25 HMC chains, 15 000 iterations for the ε = 0.05 HMC

chains and 100 000 iterations for the modified ABC MCMC chains; in all cases this
leading to chains taking roughly five minutes to run each in our implementations
(we recorded exact run times for each chain including the warm-up iterations to
use in normalising efficiency estimates). Although performance of the different
methods is somewhat implementation dependent, in all cases the use of efficient
compiled updates for the main computational bottlenecks (either via Cython for

Graham and Storkey/Inference in differentiable generative models 37

the modified ABC MCMC implementation or Theano for the two HMC algorithms)
meant that the interpreter overhead from using Python was at least minimal,
with all chains fully utilising a single CPU core when running.

The estimated parameter posterior distributions using the samples from all of
the chains run for each of the approaches tested are shown in Figure 6. We can
see that the marginal posteriors generally concentrate relatively tightly around
the values of the parameters used to generate the data (shown by dashed lines),
with the constrained HMC and modified ABC MCMC algorithms showing tighter
estimated distributions than the Gaussian kernel HMC chains, with the ε = 0.25
case being the most diffuse as expected. The estimated posterior marginals from
the ε = 0.05 HMC chains show spurious appearing irregularities not evident in
the results from the other chains, which is indicative of convergence issues in
the chains. The estimated potential scale reduction factor (PSRF) statistic [35]
for the ε = 0.05 HMC chains was R̂ = 1.21 which also suggests convergence
problems (R̂ values close one are indicative of chains having converged); for both
the constrained HMC and modified ABC MCMC chains R̂ = 1.00 while for the
ε = 0.25 HMC chains R̂ = 1.03.

Figure 7 shows estimates of the effective sample size (ESS) for the posterior
means of each model parameter (calculated using the CODA package in R [75])
normalised by the chain run time in seconds and grouped by chains of each the
four approaches tested. The coloured bars show the mean values across the five
independent chains for each method and the black ticks ±1 standard error of
mean. Although as noted above the real-time performance of the methods is
somewhat implementation dependent, it seems that the proposed constrained
HMC method performs broadly about as well as the modified ABC MCMC approach
here in terms of sampling efficiency, while the methods performing HMC in the
generator input space using a Gaussian ABC kernel are significantly less efficient.

That the proposed constrained HMC method works about as well as an algo-
rithm custom tuned to this particular problem is encouraging. Further given the
generally improved relative performance of HMC methods compared to random-
walk Metropolis based methods as the dimension of the target distribution grows,
it seems plausible that the comparison would be even more positive towards
the constrained HMC method in models with larger numbers of parameters. It
is interesting to note that both approaches use iterative optimisation methods
within the inner loop of the algorithms: in the modified ABC MCMC method
interval bisection is used to find a relatively tight bounding box on the allowable
values of the auxiliary uniform variables used to generate the simulated data
given the current parameter values, while in our constrained HMC approach a
quasi-Newton iteration is used to project on to the constraint manifold in the
input space corresponding to the fibre of observed data under the generator
function gx. In both cases this helps overcome the curse of dimensionality effects
typically experienced when conditioning on high-dimensional observed data in
ABC inference problems.

Graham and Storkey/Inference in differentiable generative models 38

4 4.5 5

0

1

2

3

M
o
d

.
A

B
C

M
C

M
C

0.5 1 1.5

0

1

2

3

4

0 0.5 1

0

2

4

-0.6 -0.2 0.2

0

2

4

4 4.5 5

0

1

2

3

C
o
n

st
ra

in
ed

H
M

C

0.5 1 1.5

0

1

2

3

4

0 0.5 1

0

2

4

-0.6 -0.2 0.2

0

2

4

4 4.5 5

0

1

2

3

A
B

C
H

M
C

(ε
=

1 /
2
0
)

0.5 1 1.5

0

1

2

3

4

0 0.5 1

0

2

4

-0.6 -0.2 0.2

0

2

4

4 4.5 5

0

1

2

3

z1

A
B

C
H

M
C

(ε
=

1 /
4
)

0.5 1 1.5

0

1

2

3

4

z2
0 0.5 1

0

2

4

z3
-0.6 -0.2 0.2

0

2

4

z4

Fig 6: Estimated marginal posterior distributions of generalised lambda model
parameters. Each row corresponds to samples from five independent chains for
MCMC method labelled to left of plot, while each column corresponds to one of
the four distribution parameters, labelled to bottom of plot. The orange dashed
line on each axis indicates the value of the parameter used to generate the data.

Graham and Storkey/Inference in differentiable generative models 39

z1 z2 z3 z4
0

2

4

2.98

2.40 2.31

3.62

2.64 2.66
2.79

2.70

0.03 0.02 0.04 0.02

0.43
0.55

0.75

0.38

E
S
S

p
er

ru
n

ti
m

e
/
s−

1

Mod. ABC MCMC Constrained HMC

ABC HMC (ε = 1/20) ABC HMC (ε = 1/4)

Fig 7: Estimated ESS for posterior means of each generalised lambda model
parameter normalised by chain run time. Each coloured set of bars corresponds to
mean estimated ESS per run time across five independent chains for the method
indicated in the legend. The ticks on the bars show ±1 standard error of mean.

12.2. Lotka–Volterra parameter inference

As a second test case we considered inferring the parameters of a SDE variant of
the Lotka–Volterra predator–prey model, a common example problem in the ABC

literature e.g. [61, 71]. In particular given observed predator–prey population
data we consider inferring the parameters of the following pair of SDEs

dr = (z1r − z2rf)dt+ dnr, df = (z4rf − z3f)dt+ dnf , (94)

where r represents the prey population, f the predator population, {zi}4i=1 the
system parameters and nr and nf are zero-mean white noise processes.

A simulator for these SDEs can be formed by using an Euler–Maruyama [47]
integration scheme to generate simulated realisations of the stochastic process
at discrete time points. If the white-noise processes nr and nf have variances σ2

r

and σ2
f respectively, then an Euler–Maruyama discretisation of S time points of

the SDE 94 with an integrator time step δt and initial system state (r0, f0) can
be generated given a vector of standard normal random variates u2 as defined in
the following pseudo-code.

function gx|z(z, u2)
r0 ← r0
f0 ← f0
for s ∈ {1 . . . S}

rs ← rs−1 + δt(z1rs−1 − z2rs−1fs−1) +
√
δtσru2,2s

fs ← fs−1 + δt(z4rs−1fs−1 − z3fs−1) +
√
δtσfu2,2s+1

x← [r1, f1, . . . rS , fS]
return x

Graham and Storkey/Inference in differentiable generative models 40

0 5 10 15 20 25 30 35 40 45 50

0

50

100

Time t

P
o
p
u
la

ti
o
n

Prey r(t)

Predator f(t)

Fig 8: Traces of generated realisations of Lotka–Volterra SDE model (94) used as
the observations in the experiments.

As suggested by the notation we can consider this Euler–Maruyama integration as
defining the observed generator gx|z of a directed generative model, mapping from
the unobserved parameter variables z and an auxiliary vector of standard normal
random inputs u2 to a vector formed by the concatenation of the simulated state
sequences. This mapping is differentiable with respect to z and u2 and so can be
used to define a differentiable generative model. The generator in this case has
the Markovian structure discussed in Section 10.2 allowing efficient computation
of the Cholesky factor of the Jacobian matrix product Jgx

JT
gx

.

In the Lotka–Volterra SDE parameterisation used in (94), all of the parameter
variables z are required to be positive. A simple suitable choice of a prior
distribution on the parameters is therefore a log-normal distribution

pz(z) =

4∏
i=1

LogNormal(zi |mi, si). (95)

A generator function for the parameters can then be defined by

function gz(u1)
z← exp(s � u1 +m)
return z

where u1 is an input vector of standard normal variables.
For the experiments we generated a synthetic observed data set x of S = 50

simulated time points of predator–prey population state sequences using the
Euler–Maruyama generator function defined above with an integrator time step
δt = 1, white noise process standard deviations σf = σr = 1, initial conditions
r0 = f0 = 100 and model parameter values z1 = 0.4, z2 = 0.005, z3 = 0.05 and
z4 = 0.001 (chosen to give stable, oscillatory dynamics). The generated sequences
used in the experiments are shown in Figure 8. We then considered the problem
of inferring the ‘unknown’ model parameters z (with the initial states, integrator
time step and noise variances assumed to be known) given the observed data x.

Graham and Storkey/Inference in differentiable generative models 41

For the log-normal prior, we used location hyperparameters mi = −2 ∀i ∈
{1 . . . 4} and scale hyperparameters to si = 1 ∀i ∈ {1 . . . 4}. As in the generalised
lambda distribution experiments in the previous section this choice of a relatively
informative prior was motivated by trying to minimise the prior probability mass
put on parameters corresponding to implausible generated sequences, with in
particular in this case the Lotka–Volterra dynamics being unstable for many
parameter settings, with an exponential blow-up in the prey population if the
predator population ‘dies off’. Biasing the prior towards smaller values was found
to favour more plausible appearing sequences with stable dynamics.

We first tested several standard ABC approaches to perform inference, condi-
tioning on the full observed data sequences i.e. without use of summary statistics.
ABC rejection using a uniform ball kernel failed catastrophically, with no accep-
tances in 106 samples even with a very large tolerance ε = 1000. A standard
(pseudo-marginal) ABC MCMC method with a Gaussian random-walk proposal
distribution also performed very poorly with the dynamic having zero accep-
tances over multiple runs of 105 updates for ε = 100 and getting stuck at points
in parameter space over thousands of iterations for larger ε = 1000, even with
very small proposal steps. Similar issues were also observed when attempting
to run pseudo-marginal ABC MCMC chains using a Gaussian kernel. This poor
performance is not unexpected, but highlights the challenges of working with
high-dimensional observations in standard ABC approaches.

We next attempted to reduce the dimensionality of the observed data and
generated observations by using a set of summary statistics. We used the nine
summary statistics employed in a similar Lotka–Volterra inference problem in
[71] - the means and log variances of the two sequences, lag-one and lag-two
autocorrelation coefficients and cross-correlation coefficient of the sequences.
Even when reducing to this much lower dimensional space, ABC reject continued
to give zero accepts unless a non-informatively large tolerance was used. Using
this set of summary statistics we were however able to successfully run ABC

MCMC chains which appeared to converge (PSRF statistic of R̂ = 1.02 across five
independent chains of 500 000 samples) when using a uniform ball kernel with
ε = 2.5 on the nine-dimensional summary statistics.

A histogram of the resulting estimated marginal posteriors on the model
parameters from the last 250 000 samples of five 500 000 sample chains is shown
in Figure 9 with the orange dashed lines indicating the values of the parameters
used to generate the data. The estimated marginal posteriors of z1 and z2 are
concentrated around the values of the parameters used to generate the data,
however this is not the case for the estimated marginal posteriors of the z3 and
z4 parameters. Although there is nothing to guarantee that the true posterior is
centred at the parameters used to generate the data4 the degree of discrepancy
between where the posterior mass is located and the parameters used to generate
the data is potentially concerning. We will see in later results that the posterior
distributions conditioned on the summary statistics of generated observations

4In general we would only expect the parameters to be a plausible sample under the
posterior; if the parameters were sampled from the prior then they would represent an exact
sample from the posterior given the generated data.

Graham and Storkey/Inference in differentiable generative models 42

−2 −1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

log z1

−6 −5 −4 −3

log z2

-3 -2 -1 0 1

log z3

-7 -6 -5 -4 -3

log z4

Fig 9: Estimated marginal posterior distributions of Lotka–Volterra model pa-
rameters using random-walk Metropolis pseudo-marginal ABC MCMC chains with
nine-dimensional summary statistics and a uniform ball kernel with ε = 2.5.
Each histogram corresponds to last 250 000 samples from five independent chains
of 500 000 samples. The orange dashed line on each axis indicates the value of
the parameter used to generate the data.

exactly matching the data summary statistics appears to be concentrated around
the data generating parameters as does the ABC posterior when conditioning on
all of the data using a uniform ball kernel.

It therefore seems here that it may be the combined use of summary statistics
and an ABC kernel which is causing a potentially non-representative posterior
distribution (in the sense of being representative of the true posterior we are
interested in, the estimated posterior may in fact be reflective of the true location
of the mass of the distribution conditioned on the summary statistics of the
data being within a distance of ε = 2.5 of the data). These issues highlight
the challenges in assessing the impact of the choice of summary statistics and
tolerance on the inferred posterior in ABC methods.

As the generative model here is differentiable we are able to apply our proposed
constrained HMC method in the input space of the generator to construct chains
directly targeting the posterior distribution of interest, constraining the output
of the generator to be equal to the observed data (to within a 10−8 infinity norm
distance used as the convergence tolerance in the Newton iteration). We ran
ten independent constrained HMC chains of 1000 samples, using an integrator
step size δt = 0.25, the number of integrator time steps per proposed update Ns
uniformly sampled from [4, 8] on each iteration, Ni = 3 inner geodesic steps per
update and a Newton convergence tolerance of ε = 10−8. As in the experiments in
the previous section, the initial states for the chains were computed by sampling
random values of the input variables u1 corresponding to the model parameters
and then solving for the values of the remaining random inputs u2 giving a
generated output equal to the observed data using the fsolve optimisation
routine in SciPy [44]. Based on visualisation of traces, the first ten iterations of
each chain were removed as ‘warm-up’ iterations.

To test how informative the nine summary statistics used in the ABC MCMC

runs were, we also ran constrained HMC chains in the posterior distribution
formed by constraining the summary statistics of the generated observed variables

Graham and Storkey/Inference in differentiable generative models 43

0

2

4

6

8

10

12

C
o
n
s.

H
M

C
(a

ll
)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

C
o
n
s.

H
M

C
(s
u
m
.)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
B
C

S
S

(U
,
ε
=

1
0
)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
B
C

S
S

(U
,
ε
=

1
0
0
)

0

5

10

0

2

4

0

2

4

6

0

2

4

6

8

10

12

A
B
C

S
S

(G
,
ε
=

1
0
)

0

5

10

0

2

4

0

2

4

6

-2 -1.5 -1 -0.5

0

2

4

6

8

10

12

log z1

A
B
C

H
M

C
(G
,
ε
=

1
0
)

−6.5 −6 −5.5 −5

0

5

10

log z2

-3.5 -3 -2.5 -2

0

2

4

log z3

−7.5 −7 −6.5 −6

0

2

4

6

log z4

Fig 10: Estimated marginal posterior distributions of Lotka–Volterra model
parameters. Each row corresponds to samples from ten independent chains for
MCMC method labelled to left of plot, while each column corresponds to one of
the four distribution parameters, labelled to bottom of plot. The orange dashed
line on each axis indicates the value of the parameter used to generate the data.

Graham and Storkey/Inference in differentiable generative models 44

x to be equal to the summary statistics of the observed data x. As the summary
statistics are all differentiable functions of the generated observations here, we
can simply defined an augmented generator which outputs summaries rather
than full observations and use this in the constrained HMC update in Algorithm
1. We used the same initial input states and algorithm settings for these chains
as for the full data case.

The resulting estimates of the marginal posteriors on the model parameters
formed using the samples from the constrained HMC chains run in these two
cases are shown in the top two rows in Figure 10, with the top row (labelled
‘Cons. HMC (all)’) corresponding to the posterior distribution conditioned on all
of the data, and the second row (labelled ‘Cons. HMC (sum.)’) corresponding
to the posterior distribution conditioned on just the summary statistics of the
data. It can be seen that in both cases the estimated posteriors are concentrated
around the parameter values used to generate the data (indicated by orange
dashed lines), unlike the previous results in Figure 9. Interestingly there seems to
be minimal loss of information about the parameters when conditioning on the
summary statistics rather than the full data here, with the estimated marginal
posteriors for the summary statistics chains only slightly more diffuse than the
corresponding marginal posterior estimates for the full data chains. In both cases
the estimated PSRF statistics across the 10 chains were R̂ = 1.00.

We also tested the proposed approach of performing ABC inference by running
chains in the input space to the generator, as discussed in Section 8. Encouragingly
we found that by performing MCMC updates to the random inputs to the
generator, we are able to tractably perform ABC inference when conditioning
on the full observed data, even when using relatively simple non-gradient based
MCMC methods. In particular based on the pseudo-marginal slice sampling of [67],
we tried using alternating elliptical slice sampling updates of the random inputs
u1 used to generate the parameters, i.e. z = gz(u1), and remaining random
inputs u2 used to generate the simulated observations given parameters, i.e.
x = gx|z(z,u2). Using this method, which had zero free settings to tune, we were
able to construct chains which appeared to converge to a reasonable approximate
posterior both when using a uniform ball kernel with ε = 100 and ε = 10 and
when using a Gaussian kernel with ε = 10. We also ran HMC chains with a ε = 10
Gaussian kernel, using an integrator step size δt = 2.5 × 10−3 and a number
of leapfrog steps per proposed update L sampled uniformly from [10, 20]. For
the slice sampling approaches we ran 10 independent chains of 60 000 samples
for each kernel and tolerance combination, discarding the first 30 000 samples
as warm-up iterations, and for the HMC case we ran 10 independent chains of
10 000 samples, discarding the first 5000 samples as warm-up iterations.

Estimates of the marginal posterior distributions on the parameters for these
chains are shown in the last four rows of Figure 10, with the label ‘ABC SS’
indicating elliptical slice sampling chains and ‘ABC HMC’ the HMC chains and
a U in parenthesis in the label indicating use of uniform ball kernel and a G in
parenthesis in the label G a Gaussian kernel, with in both cases the corresponding
ε tolerance also given in the parentheses. It is immediately evident that the
estimated ABC marginal posteriors here are more diffuse than for the constrained

Graham and Storkey/Inference in differentiable generative models 45

log z1 log z2 log z3 log z4

0

1

2

3

4

5

3.14 3.13
3.22 3.24

2.06 1.99

2.26

2.51

0.02 0.02 0.01 0.01

1.02 1.05 0.99
1.20

0.27 0.27 0.21 0.25
0.10 0.10 0.07 0.08

E
S
S

p
er

ru
n

ti
m

e
/
s−

1

Cons. HMC (full) Cons. HMC (summ.) ABC SS (U, ε = 10)

ABC SS (U, ε = 100) ABC SS (G, ε = 10) ABC HMC (G, ε = 10)

Fig 11: Estimated ESS for posterior means of each Lotka–Volterra model param-
eters normalised by chain run time. Each coloured set of bars corresponds to
mean estimated ESS per run time across ten independent chains for the method
indicated in the legend (key: SS - slice sampling, summ. - summary statistics,
G - Gaussian kernel, U - uniform ball kernel). The ticks on the bars show ±1
standard error of mean.

HMC chains, particularly for the slice sampling chains using a uniform ball kernel
with ε = 100 (fourth row), though the estimated posteriors are still significantly
more concentrated than for the summary statistic based ABC posterior shown in
Figure 9 (note the difference in the horizontal scales compared to Figure 10).
Unlike the summary-statistic based pseudo-marginal ABC MCMC estimates in
Figure 9 though, all of the marginal posterior estimates for these ABC methods
using the full set of observations are concentrated around the region of the
parameters used to generate the data, and seem to broadly consistent, albeit
more diffuse, with the constrained HMC estimates of the true posterior.

Between the four different approaches, the estimates of the ABC posterior
using a uniform ball kernel with ε = 10 (row three) seem to be the closest to the
constrained HMC estimates of the true posterior (first row), with in particular
the marginal estimates for z1 and z2 visually very similar. For the z3 and z4
marginal posterior estimates in the uniform ball kernel ε = 10 case there are
spurious appearing peaks however suggesting possible convergence issues and
this is backed up by a PSRF statistic of R̂ = 1.89 across the 10 chains. Although
not as visible in the marginal posterior estimates, the Gaussian kernel HMC

chains also suffered convergence issues, with a PSRF statistic of R̂ = 1.33 across
the 10 chains. The ε = 10 Gaussian kernel and ε = 100 uniform ball kernel slice
sampling chains both had estimated PSRF statistics of R̂ = 1.01.

We also measured the sampling efficiency of the chains generated using
the different approaches by computing ESS estimates for each parameter and

Graham and Storkey/Inference in differentiable generative models 46

normalising by the total chain run-time (including warm-up iterations), with
the results shown in Figure 11. As there are quite significant differences between
the distributions being targeted by the chains of most of the methods, as
well as potential differences in the relative efficiencies of the implementations,
the run time normalised ESS estimates can only give a rough indication of
relative performance. Subject to those provisos however, the results suggest
the constrained HMC methods are potentially significantly more efficient than
the alternative approaches here, despite also giving in some sense the ‘best’
estimates of the true posterior. Although not as efficient as the constrained
HMC methods here, the slice sampling approaches are an attractively simple
and ‘black-box’ method, with no free parameters to tune and no requirement to
propagate derivatives through the generative models of interest.

Somewhat counter-intuitively perhaps, the constrained HMC chains condi-
tioned on the full data showed higher sampling efficiency than those conditioned
on the reduced dimension summary statistics. Given the earlier statement that
a dominant cost in the constrained HMC algorithm is the computation of the
Cholesky decomposition of the generator Jacobian product, chol Jgx

Jgx
T, which

in general will scale cubically with the dimension of the generator output, it
might be expected that projecting the generator output to a lower-dimensional
space would lead to lower-cost updates and so improved efficiency. While this may
be the case in some settings, here there is the additional factor that the generator
Jacobian for the full observations case has the triangular block structure dis-
cussed in Section 10.2, which allows a more efficient computation of the Cholesky
factor using low-rank updates. This structure is lost when projecting down to
lower dimensions, and so a standard cubic-cost Cholesky factorisation routine
needs to be used. In models without such structure however and with large
numbers of observed variables, projecting down to lower-dimensional summaries
could be an important method for improving the scalability of the constrained
HMC approach, and as shown in the example here, in some cases may entail
minimal loss of information about the unobserved variables being inferred.

12.3. Human pose and camera model inference

For the final experiment we consider inference in an differentiable generative
model for human poses. In particular we consider the task of inferring a three-
dimensional human pose given binocular two-dimensional projections of joint
positions, using a learnt prior model of poses from motion capture and anthro-
pometric data, and a simple projective pin-hole camera model.

We parameterised the poses used a 19 joint skeleton model, with degrees of
freedom specifying the angular configurations of each joint and the lengths of
the bones between joints. In total the model has 47 local joint angles za (with
some joints, for example those corresponding to knees and elbows, not having a
full three degrees of freedom). The prior over the joint angles was specified by a
Gaussian variational autoencoder (VAE) model [46, 82] trained on the PosePrior
motion caption dataset [1]. The circular topology of the angular data is poorly

Graham and Storkey/Inference in differentiable generative models 47

Algorithm 2 Human pose model generator functions.

Input:
{W `, b`}L`=0 : parameters of pose angle differentiable network;
µb, Σ : mean and covariance of skeleton bone lengths;
µc,:2, σc,:2 : camera x, y coordinates normal prior parameters;
µc,2, σc,2 : camera z coordinate log-normal prior parameters;
JointPositions : maps pose angles and bone lengths to joint positions;
CameraMatrices : maps camera parameters to a pair of camera matrices;
Project : uses camera matrix to map world to image coordinates;
Partition : partitions a vector in a specified number of equal length parts;
Flatten : flattens a multidimensional array to a vector.

function gz([uh; u1; u2; ub; uc])
hL ← DifferentiableNetwork(uh)
m1,k1,m2,k2 ← Partition(hL, 4)
r1 ← exp(k1)� u1 + m1

r2 ← exp(k2)� u2 + m2

za ← atan2(r2, r1)
zb ← exp(µb + Σbub)
zc,:2 ← σc,:2 � uc,:2 + µc,:2
zc,2 ← exp(σc,2uc,2 + µc,2)
return [za; zb; zc]

function DifferentiableNetwork(uh)
h0 ← tanh(W 0uh + b0)
for ` ∈ {1 ... L− 1}

h` ← tanh(W `h`−1 + b`) + h`−1

return WLhL−1 + bL

function gx|z([za; zb; zc])
P← JointPositions(za, zb)
C1, C2 ← CameraMatrices(zc)
X1 ← Project(C1,P)
X2 ← Project(C2,P)
return Flatten([X1;X2])

Graham and Storkey/Inference in differentiable generative models 48

uh
N(0, I)

m1

k1

m2

k2

r1

u1

N(0, I)

r2

u2
N(0, I)

za

ub
N(0, I)

zb

P

C1 x

uc zc
N(0, I)

C2

Fig 12: Factor graph of human pose differentiable generative model. The opera-
tions corresponding to the deterministic nodes (�) in the graph are described in
Algorithm 2.

matched by the Euclidean space a Gaussian VAE typically learns a distribution
on, and simply ‘unwrapping’ the angles to e.g. [−π, π) leads to discontinuities
at the ±π cut-point, this both making the initial learning problem challenging
(as there is no in-built prior knowledge of continuity across the cut-point) and
tending to lead to a learned latent space less amenable to MCMC inference as
‘nearby’ poses with joint angles on opposite sides of the cut-point will likely end
up corresponding to points far apart in the latent space.

During training we therefore mapped each vector of 47 joint angles z
(i)
a

(corresponding to a single motion capture datapoint) to a pair of 47-dimensional

vectors (r
(i)
1 , r

(i)
2) by sampling a Gaussian random vector n(i) ∼ N (0, I) and

then computing r
(i)
1 = expn(i) � cos z

(i)
a and r

(i)
2 = expn(i) � sin z

(i)
a and

training the VAE to maximise (a variational lower bound) on the joint marginal

density of the {r(i)1 , r
(i)
2 }i pairs. At the cost of doubling the dimension, this leads

to an embedding in a Euclidean space which does not introduce any arbitrary
cut-points and empirically seemed to lead to better sample quality from the
learned generative model compared to learning the angles directly. Given the
trained model we can generate a vector of angles za using the model by sampling
a Gaussian code (latent representation) vector uh from N (0, I) then sampling a
pair of 47-dimensional vectors r1 and r2 from the learnt Gaussian decoder model
given uh (and further Gaussian random input vectors u1 and u2), and finally
recovering an angle by computing za = atan2(r2, r1). The resulting distribution
on za is only implicitly defined, but the overall generative model is differentiable
with respect to the input vectors uh, u1 and u2.

The PosePrior motion capture data includes recordings from only a relatively
small number of distinct actors and so limited variation in the ‘bone-lengths’ of

Graham and Storkey/Inference in differentiable generative models 49

the skeleton model. Therefore a separate log-normal model for the bone lengths
zb was fitted using data from the ANSUR anthropometric data-set [39], due to
symmetry in the skeleton thirteen independent lengths being specified.

A simple pin-hole projective camera model with three position parameters
zc and fixed focal-length was used. The camera orientation is fixed to avoid
replicating the degrees of freedom specified by the angular orientation of the root
joint of the skeleton: only the relative camera–skeleton orientation is important.
A log-normal prior distribution was placed on the depth co-ordinate zc,2 to
enforce positivity with normal priors on the other two co-ordinates zc,0 and zc,1.

Given a generated triplet of joint-angles, bone length and camera parameters
za, zb and zc, a binocular pair of simulated two-dimensional projection of the
skeleton x are generated by first mapping the joint-angles and bone-lengths to a
4× 19 matrix of joint positions P in homogeneous world-coordinates by recursing
through the skeleton tree. Two 3 × 4 projective camera matrices C1 and C2

are generated from zc (with a known fixed offset between the camera centres)
and then used to project the world-coordinate joint positions to two 2 × 19
matrices X1 and X2 of joint positions in two-dimensional image-coordinates. The
projected positions matrices X1 and X2 are flattened to a vector to give the
19× 2× 2 = 76 dimensional observed vector x. The overall corresponding model
generator functions gx|z and gz are described procedurally in Algorithm 2 and a
factor graph summarising the model structure shown in Figure 12.

The generator gx here has a complex form, not corresponding to either the
independent or Markovian observations structures discussed in Section 10.2.
The total input dimension is Du = 140 and output dimension Dx = 76. The
resulting generator Jacobian Jgx

is not full row-rank across the input space;
for this binocular observation case there are a maximum of 19 × 3 = 57 true
degrees of freedom in the skeleton model (three degrees of freedom for each joint)
versus the Dx = 76 observed dimensions. We therefore define an ‘augmented’
noisy generator gy(u,n) = gx(u) + εn to use to perform inference with as
discussed in Section 8. We set the noise standard deviation ε = 0.01 which
produces a non-obvious level of perturbation in visualisations of the generated
two-dimensional projections. Similar to the earlier discussion of ABC kernels, we
can either consider this additional noise as a computational approximation or as
part of the model, representing for example the measurement noise that would
be present in two-dimensional joint positions derived from image data.

Under this noisy generator model, the joint density on the generated outputs
y and inputs u has an explicit form

py,u(y,u) = N
(
y | gx(u), ε2I

)
N (u |0, I), (96)

and so the resulting posterior density pu|y on the model inputs u given observed
y values can be evaluated up to a normalising constant. This is equivalent to an
ABC posterior density in the input space (35) when using a Gaussian kernel.

We generated three sets of binocular two-dimensional joint position projections
to use as the observed data for the inference experiments using the noisy generator
function; these are shown in the left column of Figure 13. Given each of these

Graham and Storkey/Inference in differentiable generative models 50

0 100 200 300 400

10−2

10−1

Time / s

R
M

S
E

o
f

p
o
se

es
ti

m
a
te

CHMC HMC

0 100 200 300 400

10−2

10−1

Time / s

R
M

S
E

o
f

p
o
se

es
ti

m
a
te

CHMC HMC

0 200 400

10−2

10−1

Time / s

R
M

S
E

o
f

p
o
se

es
ti

m
a
te

CHMC HMC

Fig 13: Results of binocular pose inference experiments. In each row the left
column shows the generated binocular two-dimensional joint position projections
used as the observed data for inference. The right column shows plots of the
RMSE of posterior mean estimates of true 3D pose used to generate the binocular
projections, using samples from a constrained HMC chains (green) versus standard
HMC chains (orange). The horizontal axes of the plot show computation time to
produce number of samples in the estimate. Solid curves are averages of RMSE

over five chains independently initialised from the prior and shaded regions show
±3 standard deviations.

Graham and Storkey/Inference in differentiable generative models 51

observed binocular joint projections, we then attempted to infer plausible values
for the model inputs u and so (as they are a deterministic function of the inputs)
the latent variables za, zb and zc describing the three-dimensional scene.

We ran chains using the proposed constrained HMC method with the noisy
generator gy, the chain state in this case being defined as both u and n, and
chains using standard HMC transitions on the posterior density pu|y on the
model inputs u. We used a integrator step size of δt = 0.05 for the constrained
HMC chains, Ng = 8 inner geodesic steps and a number of integrator steps per
proposed update Ns uniformly sampled from [10, 20]. We ran five chains of 200
samples each from independent initialisations. To compute the initial states for
the chains, we generated u values independently from the N (0, I) prior and then
set the n values to 1

ε

(
x− gy(u)

)
where u are the values sampled from the prior

and x is the observed data being conditioned on.
For the standard HMC chains we used an integrator step size of δt = 2× 10−4

and a number of leapfrog steps L per proposed update randomly sampled from
[100, 200]. We again ran five chains, independently sampling the initial u state
from the normal prior, and running each chain for 1200 samples. The small
integrator step size used here was the result of higher step sizes leading to some
chains accepting very few or in some cases no updates. This issue was also
encountered when using smaller numbers of leapfrog steps per update, including
just one integrator step, with these chains however showing marginally slower
overall run-time adjusted convergence. Given the small size of ε here and the
resulting tight concentration of the posterior mass around the fibre g−1x [x], the
need for a small step size when using an unconstrained HMC approach is not
surprising. However the ability of the constrained HMC updates to support a
much larger step size provides evidence for the earlier assertion in Section 8 that
the constrained HMC method can offer improved performance in such cases.

Due to the high-dimensional nature of the latent variables being inferred it is
challenging to assess the convergence of the chains here. As a proxy measure for
convergence, we computed the root mean squared error (RMSE) of an estimate
of the three-dimensional joint positions compared the true positions, computed
using the mean of the three-dimensional joint positions generated from the
posterior u input samples. In this binocular case, the disparity in projected joint
positions between the two projections gives information about the distances of
the corresponding joints from the image plane in the depth direction and so
we would expect the posterior distribution on the three-dimensional pose to be
concentrated around the true values used to generate the observations.

The right column of Figure 13 shows the RMSE values as a function of
the computation time taken to generate the number of samples included in the
estimate, for each of the three generated scenes (with the projection visualisations
corresponding to the RMSE plots in each row). The constrained HMC chains (green
curves) consistently give position estimates which converge more quickly towards
the true positions. In this case standard HMC (orange curves) performs relatively
poorly despite the significantly cheaper cost of each integrator step compared
to the constrained dynamics. The posterior distribution on the model inputs
appeared to be multimodal here, with the chains often seeming to converge to

Graham and Storkey/Inference in differentiable generative models 52

Fig 14: Orthographic projections (top: front view, bottom: side view) of 3D poses
consistent with monocular projections. Left most pair (black) shows pose used
to generate observations, right three show constrained HMC samples.

slightly different modes. Visually inspecting the sampled poses and individual run
traces (not shown) it seems that there are a number of local modes corresponding
to a small subset of joints being ‘incorrectly’ positioned; both the HMC and
constrained HMC chains are similarly susceptible to getting stuck in local modes,
as neither dynamic is likely to overcome large energy barriers.

To highlight the generality of the approach, we also considered inferring
three-dimensional scene information from a single two-dimensional projection.
Monocular projection is inherently information destroying with significant uncer-
tainty to the true pose and camera parameters which generated the observations.
Figure 14 shows pairs of orthographic projections of 3D poses: the left most
column is the pose used to generate the projection conditioned on and the right
three columns are poses sampled using constrained HMC consistent with the
observations. The top row shows front x–y views, corresponding to the camera
view though with a orthographic rather than the perspective projection used
in the generative model, the bottom row shows side z–y views with the z axis
the depth from the camera. The dynamic is able to move between a range of
plausible poses consistent with the observations while reflecting the inherent
depth ambiguity from the monocular projection.

13. Discussion

We have presented a generally applicable framework for performing inference in
differentiable generative models. Though the proposed constrained HMC method
is computationally costly, the resulting coherent gradient-based exploration of the
state space can lead to significantly improved sampling efficiency over alternative
methods as seen in the three inference experiments in the previous section.

Further our approach allows asymptotically exact inference in differentiable

Graham and Storkey/Inference in differentiable generative models 53

generative models where ABC methods might otherwise be used. We suggest an
approach for dealing with two of the key issues in ABC methods — enabling
inference in continuous spaces as ε collapses to zero and allowing efficient in-
ference when conditioning on high-dimensional observations without the need
for dimensionality reduction with summary statistics (and the resulting task of
choosing appropriate summary statistics).

As well as being of practical importance itself, this approach can be useful in
providing ‘ground truth’ inferences in more complex models to assess the affect
of the approximations used in ABC methods on the quality of the inferences. The
application of constrained HMC to a generator function outputting summary
statistics in the Lotka–Volterra experiments was an interesting example of this:
that the posterior conditioning exactly on the summaries without use of an ABC

kernel would be nearly as informative about the parameters as conditioning on
all of the data was not necessarily obvious a-priori.

In molecular simulations, constrained dynamics are often used to improve
efficiency with intra-molecular motion is removed by fixing bond lengths. This
allows a larger time-step to be used due to the removal of high-frequency bond
oscillations [48]. An analogous effect is present when performing inference in
an ABC setting with a ε kernel ‘soft-constraint’ to enforce consistency between
the inputs and observed outputs. As ε→ 0 the scales over which the posterior
density changes value in directions orthogonal to the constraint manifold and
along directions tangential to the manifold increasingly differ. To stay within the
soft constraint a small step size needs to be used. Using a constrained dynamic
decouples the motion on the constraint manifold from the steps to project on to
it, allowing more efficient larger steps to be used for moving on the manifold.

A significant limitation of the proposed method is the requirement of differ-
entiability of the generator. This prevents applying our approach to generative
models which use discontinuous operations or discrete random inputs. In some
cases conditioned on fixed values of discrete random inputs the generator may
still be differentiable and so the proposed method can be used to update the con-
tinuous random inputs given values of the discrete inputs. To ensure ergodicity of
the overall chainl, this would need to be alternated with updates to the discrete
inputs, which would require devising methods for updating the discrete inputs
to the generator while constraining its output to exactly match observations.

Acknowledgements

Our thanks to Iain Murray for several useful discussions and to Ben Leimkuhler
for pointing out the potential of using a geodesic integration scheme. We are
also grateful to the anonymous reviewers of this paper and a earlier conference
version for their helpful feedback. This work was supported in part by grants
EP/F500385/1 and BB/F529254/1 for the University of Edinburgh School of
Informatics Doctoral Training Centre in Neuroinformatics and Computational
Neuroscience (www.anc.ac.uk/dtc) from the UK Engineering and Physical Sci-
ences Research Council (EPSRC), UK Biotechnology and Biological Sciences
Research Council (BBSRC), and the UK Medical Research Council (MRC).

Graham and Storkey/Inference in differentiable generative models 54

References

[1] I. Akhter and M. J. Black. Pose-conditioned joint angle limits for 3D
human pose reconstruction. In IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

[2] D. Allingham, R. King, and K. L. Mengersen. Bayesian estimation of
quantile distributions. Statistics and Computing, 19(2):189–201, 2009.

[3] H. C. Andersen. RATTLE: A velocity version of the SHAKE algorithm for
molecular dynamics calculations. Journal of Computational Physics, 1983.

[4] C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient
Monte Carlo computations. The Annals of Statistics, 2009.

[5] C. P. Barnes, S. Filippi, M. P. H. Stumpf, and T. Thorne. Considerate
approaches to constructing summary statistics for ABC model selection.
Statistics and Computing, 22(6):1181–1197, 2012.

[6] E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel. Algorithms for
constrained molecular dynamics. Journal of computational chemistry, 1995.

[7] S. Barthelmé and N. Chopin. Expectation propagation for likelihood-free
inference. Journal of the American Statistical Association, 109(505):315–
333, 2014.

[8] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Au-
tomatic differentiation in machine learning: a survey. arXiv preprint
arXiv:1502.05767, 2015.

[9] M. A. Beaumont, J.-M. Cornuet, J.-M. Marin, and C. P. Robert. Adaptive
approximate Bayesian computation. Biometrika, 96(4):983–990, 2009.

[10] M. A. Beaumont, W. Zhang, and D. J. Balding. Approximate Bayesian
computation in population genetics. Genetics, 2002.

[11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science & Engineering,
13(2):31–39, 2011.

[12] M. Betancourt. The fundamental incompatibility of scalable Hamiltonian
Monte Carlo and naive data subsampling. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.

[13] M. Betancourt, S. Byrne, and M. Girolami. Optimizing the integrator step
size for Hamiltonian Monte Carlo. arXiv preprint arXiv:1411.6669, 2014.

[14] M. Betancourt and M. Girolami. Hamiltonian Monte Carlo for hierarchical
models. Current trends in Bayesian methodology with applications, 79:30,
2015.

[15] M. Bigerelle, D. Najjar, B. Fournier, N. Rupin, and A. Iost. Application
of lambda distributions and bootstrap analysis to the prediction of fa-
tigue lifetime and confidence intervals. International Journal of Fatigue,
28(3):223–236, 2006.

[16] M. G. Blum. Approximate Bayesian computation: a nonparametric perspec-
tive. Journal of the American Statistical Association, 105(491):1178–1187,
2010.

[17] M. G. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson. A compar-
ative review of dimension reduction methods in approximate Bayesian

Graham and Storkey/Inference in differentiable generative models 55

computation. Statistical Science, 28(2):189–208, 2013.
[18] G. Bonnet. Transformations des signaux aléatoires a travers les systemes

non linéaires sans mémoire. Annals of Telecommunications, 19(9):203–220,
1964.

[19] M. A. Brubaker, M. Salzmann, and R. Urtasun. A family of MCMC
methods on implicitly defined manifolds. In International Conference on
Artificial Intelligence and Statistics, 2012.

[20] S. Byrne and M. Girolami. Geodesic Monte Carlo on embedded manifolds.
Scandinavian Journal of Statistics, 2013.

[21] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte
Carlo. In Proceedings of the 31st International Conference on Machine
Learning, 2014.

[22] T. Christensen, A. Hurn, and K. Lindsay. The devil is in the detail: hints
for practical optimisation. Economic Analysis and Policy, 38(2):345–368,
2008.

[23] C. J. Corrado et al. Option pricing based on the generalized lambda
distribution. Journal of Futures Markets, 21(3):213–236, 2001.

[24] J. Dahlin, F. Lindsten, J. Kronander, and T. B. Schön. Accelerating
pseudo-marginal Metropolis-Hastings by correlating auxiliary variables.
arXiv preprint arXiv:1511.05483, 2015.

[25] G. Deligiannidis, A. Doucet, M. K. Pitt, and R. Kohn. The correlated
pseudo-marginal method. arXiv preprint arXiv:1511.04992, 2015.

[26] P. Diaconis, S. Holmes, and M. Shahshahani. Sampling from a manifold.
In Advances in Modern Statistical Theory and Applications, pages 102–125.
Institute of Mathematical Statistics, 2013.

[27] P. J. Diggle and R. J. Gratton. Monte Carlo methods of inference for
implicit statistical models. Journal of the Royal Statistical Society. Series
B (Methodological), pages 193–227, 1984.

[28] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte
Carlo. Physics Letters B, 1987.

[29] V. A. Epanechnikov. Non-parametric estimation of a multivariate prob-
ability density. Theory of Probability & Its Applications, 14(1):153–158,
1969.

[30] H. Federer. Geometric measure theory. Springer, 2014.
[31] M. Freimer, G. Kollia, G. S. Mudholkar, and C. T. Lin. A study of the

generalized Tukey lambda family. Communications in Statistics-Theory
and Methods, 17(10):3547–3567, 1988.

[32] B. J. Frey. Extending factor graphs so as to unify directed and undi-
rected graphical models. In Proceedings of the Nineteenth conference on
Uncertainty in Artificial Intelligence, pages 257–264. Morgan Kaufmann
Publishers Inc., 2002.

[33] Y.-X. Fu and W.-H. Li. Estimating the age of the common ancestor of a
sample of DNA sequences. Molecular biology and evolution, 14(2):195–199,
1997.

[34] A. Gelman, D. Lee, and J. Guo. Stan: A probabilistic programming
language for bayesian inference and optimization. Journal of Educational

Graham and Storkey/Inference in differentiable generative models 56

and Behavioral Statistics, 40(5):530–543, 2015.
[35] A. Gelman and D. B. Rubin. Inference from iterative simulation using

multiple sequences. Statistical science, pages 457–472, 1992.
[36] W. Gilchrist. Statistical Modelling with Quantile Functions. CRC Press,

2000.
[37] M. Girolami and B. Calderhead. Riemann-manifold Langevin and Hamilto-

nian Monte Carlo methods. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 73(2):123–214, 2011.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, 2014.

[39] C. C. Gordon, T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville,
I. Tebbets, and R. A. Walker. Anthropometric survey of US army personell:
Final report. Technical report, United States Army, 1988.

[40] C. Gourieroux, A. Monfort, and E. Renault. Indirect inference. Journal of
applied econometrics, 8(S1):S85–S118, 1993.

[41] C. Hartmann and C. Schutte. A constrained hybrid Monte-Carlo algorithm
and the problem of calculating the free energy in several variables. ZAMM-
Zeitschrift fur Angewandte Mathematik und Mechanik, 2005.

[42] C. Hastings Jr, F. Mosteller, J. W. Tukey, and C. P. Winsor. Low moments
for small samples: a comparative study of order statistics. The Annals of
Mathematical Statistics, pages 413–426, 1947.

[43] M. D. Hoffman and A. Gelman. The No-U-turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, 2014.

[44] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed ¡today¿].

[45] R. Kindermann and L. Snell. Markov random fields and their applications.
American Mathematical Society, 1980.

[46] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Pro-
ceedings of the 2nd International Conference on Learning Representations
(ICLR), 2013.

[47] P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Applications of Mathematics. Springer-Verlag, 1992.

[48] B. Leimkuhler and C. Matthews. Efficient molecular dynamics using
geodesic integration and solvent–solute splitting. In Proc. R. Soc. A. The
Royal Society, 2016.

[49] B. Leimkuhler and G. W. Patrick. A symplectic integrator for Riemannian
manifolds. Journal of Nonlinear Science, 6(4):367–384, 1996.

[50] B. Leimkuhler and S. Reich. Simulating Hamiltonian dynamics. Cambridge
University Press, 2004.

[51] B. J. Leimkuhler and R. D. Skeel. Symplectic numerical integrators in
constrained Hamiltonian systems. Journal of Computational Physics, 1994.

[52] T. Lelièvre, M. Rousset, and G. Stoltz. Langevin dynamics with constraints
and computation of free energy differences. Mathematics of computation,
2012.

Graham and Storkey/Inference in differentiable generative models 57

[53] F. Lindsten and A. Doucet. Pseudo-marginal hamiltonian monte carlo.
arXiv preprint arXiv:1607.02516, 2016.

[54] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2):146–160, 1976.

[55] D. J. MacKay. Information theory, inference and learning algorithms.
Cambridge University Press, 2003.

[56] J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate
Bayesian computational methods. Statistics and Computing, 2012.

[57] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte
Carlo without likelihoods. Proceedings of the National Academy of Sciences,
2003.

[58] R. I. McLachlan, K. Modin, O. Verdier, and M. Wilkins. Geometric
generalisations of SHAKE and RATTLE. Foundations of Computational
Mathematics, 14(2):339–370, 2014.

[59] R. McVinish. Improving abc for quantile distributions. Statistics and
Computing, 22(6):1199–1207, 2012.

[60] E. Meeds, R. Leenders, and M. Welling. Hamiltonian ABC. In Proceedings
of 31st Conference of Uncertainty in Artificial Intelligence, 2015.

[61] T. Meeds and M. Welling. Optimization Monte Carlo: Efficient and
embarrassingly parallel likelihood-free inference. In Advances in Neural
Information Processing Systems, 2015.

[62] S. Mohamed and B. Lakshminarayanan. Learning in implicit genera-
tive models. In Proceedings of the International Conference on Learning
Representations, 2017.

[63] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK-1.
ANL-80-74, Argonne National Laboratory, 1980.

[64] I. Murray. Differentiation of the Cholesky decomposition. arXiv preprint
arXiv:1602.07527, 2016.

[65] I. Murray and R. P. Adams. Slice sampling covariance hyperparameters of
latent Gaussian models. In Advances in Neural Information Processing
Systems, 2010.

[66] I. Murray, R. P. Adams, and D. J. MacKay. Elliptical slice sampling. In The
Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, volume 9 of JMLR: W&CP, pages 541–548, 2010.

[67] I. Murray and M. Graham. Pseudo-marginal slice sampling. In Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics,
pages 911–919, 2016.

[68] R. M. Neal. MCMC using Hamiltonian dynamics, chapter 5, pages 113–162.
Chapman & Hall/CRC, 2011.

[69] A. Öztürk and R. Dale. A study of fitting the generalized lambda distribu-
tion to solar radiation data. Journal of Applied Meteorology, 21(7):995–1004,
1982.

[70] S. Pal. Evaluation of nonnormal process capability indices using generalized
lambda distribution. Quality Engineering, 17(1):77–85, 2004.

[71] G. Papamakarios and I. Murray. Fast ε-free inference of simulation mod-
els with Bayesian conditional density estimation. Advances in Neural

Graham and Storkey/Inference in differentiable generative models 58

Information Processing Systems 29, 2016.
[72] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. Non-centered parame-

terisations for hierarchical models and data augmentation. In Bayesian
Statistics 7: Proceedings of the Seventh Valencia International Meeting,
volume 307. Oxford University Press, USA, 2003.

[73] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. A general framework
for the parametrization of hierarchical models. Statistical Science, pages
59–73, 2007.

[74] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible
inference. Morgan Kaufmann, 1988.

[75] M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence
diagnosis and output analysis for MCMC. R News, 6(1):7–11, 2006.

[76] M. J. D. Powell. Numerical Methods for Nonlinear Algebraic Equations,
chapter A Hybrid Method for Nonlinear Equations. Gordon and Breach,
1970.

[77] D. Prangle. Summary statistics in approximate Bayesian computation.
arXiv preprint arXiv:1512.05633, 2015.

[78] R. Price. A useful theorem for nonlinear devices having Gaussian inputs.
IRE Transactions on Information Theory, 4(2):69–72, 1958.

[79] J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman.
Population growth of human Y chromosomes: a study of Y chromosome
microsatellites. Molecular biology and evolution, 16(12):1791–1798, 1999.

[80] J. S. Ramberg and B. W. Schmeiser. An approximate method for generating
asymmetric random variables. Communications of the ACM, 17(2):78–82,
1974.

[81] O. Ratmann, C. Andrieu, C. Wiuf, and S. Richardson. Model criticism
based on likelihood-free inference, with an application to protein network
evolution. Proceedings of the National Academy of Sciences, 2009.

[82] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of
The 31st International Conference on Machine Learning, pages 1278–1286,
2014.

[83] C. P. Robert, K. Mengersen, and C. Chen. Model choice versus model
criticism. Proceedings of the National Academy of Sciences of the United
States of America, 2010.

[84] D. B. Rubin. Bayesianly justifiable and relevant frequency calculations for
the applied statistician. The Annals of Statistics, 12(4):1151–1172, 1984.

[85] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming
in Python using PyMC3. PeerJ Computer Science, 2016.

[86] S. A. Sisson and Y. Fan. Likelihood-free MCMC, chapter 12, pages 313–333.
Chapman & Hall/CRC, 2011.

[87] S. A. Sisson, Y. Fan, and M. M. Tanaka. Sequential Monte Carlo without
likelihoods. Proceedings of the National Academy of Sciences, 104(6):1760–
1765, 2007.

[88] J. C. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE transactions on automatic

Graham and Storkey/Inference in differentiable generative models 59

control, 37(3):332–341, 1992.
[89] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given

by Algorithms. PhD thesis, University of Illinois at Urbana-Champaign,
1980.

[90] S. Tavaré, D. J. Balding, R. C. Griffiths, and P. Donnelly. Inferring
coalescence times from DNA sequence data. Genetics, 145(2):505–518,
1997.

[91] Theano development team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
2016.

[92] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf. Approximate
Bayesian computation scheme for parameter inference and model selection
in dynamical systems. Journal of the Royal Society Interface, 6(31):187–202,
2009.

[93] D. Tran, R. Ranganath, and D. M. Blei. Deep and hierarchical implicit
models. arXiv preprint arXiv:1702.08896, 2017.

[94] M.-N. Tran, D. J. Nott, and R. Kohn. Variational bayes with intractable
likelihood. Journal of Computational and Graphical Statistics, 2017.

[95] J. W. Tukey. Practical relationship between the common transformations
of percentages or fractions and of amounts. Technical Report 36, Statistical
Research Group,Princeton, 1960.

[96] G. Weiss and A. von Haeseler. Inference of population history using a
likelihood approach. Genetics, 149(3):1539–1546, 1998.

[97] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient
Langevin dynamics. In Proceedings of the 28th International Conference
on Machine Learning, 2011.

[98] R. D. Wilkinson. Approximate Bayesian computation (ABC) gives exact
results under the assumption of model error. Statistical applications in
genetics and molecular biology, 2013.

[99] S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic
systems. Nature, 466(7310):1102–1104, 2010.

[100] E. Zappa, M. Holmes-Cerfon, and J. Goodman. Monte Carlo on man-
ifolds: sampling densities and integrating functions. arXiv preprint
arXiv:1702.08446, 2017.

	Introduction
	Notation
	Problem definition
	Differentiable generative models
	Model parameterisation
	Directed and undirected generative models
	Approximate Bayesian Computation
	Inference in the input space
	Constrained Hamiltonian Monte Carlo
	Implementation details
	Related work
	Numerical experiments
	Discussion
	References

